码迷,mamicode.com
首页 > Web开发 > 详细

Day 5 神经网络Neural Network

时间:2018-03-13 16:29:18      阅读:179      评论:0      收藏:0      [点我收藏+]

标签:src   逻辑   ural   例子   函数   nbsp   通过   需要   net   

神经元模型

  技术分享图片

  可以将神经元看作一个计算单元,它从输入神经接受一定的信息,做一些计算,然后将结果通过轴突传送到其它节点或大脑中的其它神经元。

  将神经元模拟为一个逻辑单元,如下:

  技术分享图片

  在上图中,输入单元为x1 x2 x3,有时也可以加上额外的x0作为偏置单位,x0的值为1,是否添加偏置单位取决于其是否对例子有利。

  中间的橙色小圈代表一个单一的神经元,而神经网络其实就是不同神经元组合在一起的集合。

  输出就是计算结果h(x)。

神经网络

  技术分享图片

  

  输入单元为x1 x2 x3,也可以加上偏置单元x0。

  中间一层有三个神经元a1(2) a2(2) a3(2),若加上偏置单元,可以再添一个a0(2)

  最后一层的节点就是中间三个节点的输出,假设函数的结果。

  其中,第一层称为输入层,中间层称为隐藏层,最后一层称为输出层。

  技术分享图片

  技术分享图片

  如,a上标(2) 下标1表示第2层的第一个激励,即隐藏层的第一个激励。所谓激励(activation) 是指由一个具体神经元读入信息后,需要利用参数矩阵,经过一系列计算再将值传给下一层,其中计算过程为s激励函数或叫做逻辑激励函数。

 前向传播Forward Propagation

  技术分享图片

  我们从输入层的激励开始,然后前向传播给隐藏层并计算隐藏层的激励,然后继续前向传播,计算出输出层的激励。

神经网络与逻辑回归

  技术分享图片

  如果盖住神经网络的输入层,会发现这其实很想逻辑回归,在逻辑回归中我们用给定的特征值预测h(x),而在神经网络中我们用隐藏层计算得到的值来预测h(x)。

其他神经网络

  技术分享图片

 

 

  

 

Day 5 神经网络Neural Network

标签:src   逻辑   ural   例子   函数   nbsp   通过   需要   net   

原文地址:https://www.cnblogs.com/zhangwb204/p/8556719.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!