Linux系统运行源码剖析-epoll代码注释
理解了中断、等待队列、调度,你就能懂Linux的80%。
--老子
转发的话,请注明出处哦:http://www.cnblogs.com/stonehat/
Linux系统内核提供了三个系统调用:
include/linux/syscalls.h
// epoll_create,创建epoll描述符
asmlinkage long sys_epoll_create(int size);
// epoll_ctl, 操作epoll描述符,增删改
asmlinkage long sys_epoll_ctl(int epfd, int op, int fd,
struct epoll_event __user *event);
// epoll_wait, 你懂的
asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
int maxevents, int timeout);
其函数实现在fs/eventpoll.c
eventpoll 本身也是一个支持poll操作的文件,所以可以把eventpoll组成一个树形关系。
下面分别按照sys_epoll_create,sys_epoll_ctl,sys_epoll_wait的顺序分析三个系统调用。
重要的结构体
// eventpoll结构体
struct eventpoll {
/* Protect the this structure access */
rwlock_t lock;
/*
* 同步用的内核信号量
*/
struct rw_semaphore sem;
/**
* 等待队列,epoll_wait()使用,将调用线程挂在这个队列上。
*/
wait_queue_head_t wq;
/* 等待队列,file->poll()会使用,在epoll中函数为ep_eventpoll_poll */
wait_queue_head_t poll_wait;
/* 就绪列表*/
struct list_head rdllist;
/* 红黑树,维护了 */
struct rb_root rbr;
};
// 内核中文件
struct file {
struct list_head f_list;
struct dentry *f_dentry;
struct vfsmount *f_vfsmnt;
//文件操作指针
struct file_operations *f_op;
atomic_t f_count;
unsigned int f_flags;
mode_t f_mode;
int f_error;
loff_t f_pos;
struct fown_struct f_owner;
unsigned int f_uid, f_gid;
struct file_ra_state f_ra;
unsigned long f_version;
void *f_security;
/* file中的私有自定义数据 */
void *private_data;
#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */
struct list_head f_ep_links;
spinlock_t f_ep_lock;
#endif /* #ifdef CONFIG_EPOLL */
struct address_space *f_mapping;
};
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
// 不阻塞,检测file状态(可读、可写等),如果条件不满足,pt将会被加到等待队列中。(一般是这种逻辑,最终如何实现还是要看设备驱动)
unsigned int (*poll) (struct file *f, struct poll_table_struct *pt);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*dir_notify)(struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file_lock *);
};
概念与关系
- 文件描述符fd:进程打开的文件的数字代表形式,是文件指针的索引。
- struct file:在内核中表示进程打开的文件。task.files[fd]=file
- struct inode:静态的文件表示。
一. sys_epoll_create
代码如下:为了方便理解原理,无关紧要的代码逻辑和异常处理删掉了
asmlinkage long sys_epoll_create(int size)
{
int error, fd;
struct inode *inode;
struct file *file;
.....
/*
* 创建一个新的file,inode,获得file对应的fd。
* 并且将file加入到当前进程打开文件列表。
*/
error = ep_getfd(&fd, &inode, &file);
/* 创建struct eventpoll,并挂在file的private_data指针上*/
error = ep_file_init(file);
.....
return fd;
}
ep_getfd简单流程
static int ep_getfd(int *efd, struct inode **einode, struct file **efile)
{
struct qstr this;
char name[32];
struct dentry *dentry;
struct inode *inode;
struct file *file;
int error, fd;
/* Get an ready to use file */
error = -ENFILE;
file = get_empty_filp();
if (!file)
goto eexit_1;
/* Allocates an inode from the eventpoll file system */
inode = ep_eventpoll_inode();
error = PTR_ERR(inode);
if (IS_ERR(inode))
goto eexit_2;
/* Allocates a free descriptor to plug the file onto */
error = get_unused_fd();
if (error < 0)
goto eexit_3;
fd = error;
/*
* Link the inode to a directory entry by creating a unique name
* using the inode number.
*/
error = -ENOMEM;
sprintf(name, "[%lu]", inode->i_ino);
this.name = name;
this.len = strlen(name);
this.hash = inode->i_ino;
dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
if (!dentry)
goto eexit_4;
dentry->d_op = &eventpollfs_dentry_operations;
d_add(dentry, inode);
file->f_vfsmnt = mntget(eventpoll_mnt);
file->f_dentry = dentry;
file->f_mapping = inode->i_mapping;
file->f_pos = 0;
file->f_flags = O_RDONLY;
file->f_op = &eventpoll_fops;
file->f_mode = FMODE_READ;
file->f_version = 0;
file->private_data = NULL;
/* Install the new setup file into the allocated fd. */
fd_install(fd, file);
*efd = fd;
*einode = inode;
*efile = file;
return 0;
eexit_4:
put_unused_fd(fd);
eexit_3:
iput(inode);
eexit_2:
put_filp(file);
eexit_1:
return error;
}
查找一个没有用的文件描述符。记为fd
创建一个空文件file结构体。记为epfile
在epoll的文件系统中创建一个inode
epfile和inode做关联。
epfile的f_ops成员(文件操作指针)和epoll的自定义函数组eventpoll_fops做关联。比较重要的一点是eventpoll_fops有一个自定义的poll函数,这个函数很重要,是实现epoll级联模型的关键。后面可以通过比较f_ops是否等于eventpoll_fops来判断file是不是epoll file。
static struct file_operations eventpoll_fops = {
.release = ep_eventpoll_close,
.poll = ep_eventpoll_poll
};
?
将epfile放到进程的打开文件列表中管理,用fd做索引。
初始化eventpoll结构,初始化等待队列和就绪队列等。
将epfile的private_data指向eventpoll结构。方便后面取eventpoll的数据。
返回给调用线程fd。
二、sys_epoll_ctl
sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
{
int error;
struct file *file, *tfile;
struct eventpoll *ep;
struct epitem *epi;
struct epoll_event epds;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
current, epfd, op, fd, event));
error = -EFAULT;
// 1. 从用户空间拷贝event数据。
if (EP_OP_HASH_EVENT(op) &&
copy_from_user(&epds, event, sizeof(struct epoll_event)))
goto eexit_1;
/* 2. 根据epollfile的文件描述符获得对应的file结构体,内核中fd和file是有一个映射关系的*/
error = -EBADF;
file = fget(epfd);
if (!file)
goto eexit_1;
/* 3. 获得要操作的描述符的file指针,例如socket描述符 */
tfile = fget(fd);
if (!tfile)
goto eexit_2;
/* 4. 校验tfile是否支持poll操作,必须支持poll才能使用epoll */
error = -EPERM;
if (!tfile->f_op || !tfile->f_op->poll)
goto eexit_3;
/*
* 5. 校验是否是epoll的file指针
*/
error = -EINVAL;
if (file == tfile || !IS_FILE_EPOLL(file))
goto eexit_3;
/*
* 6. 取eventpoll,从创建时,我们知道epoll把自己的eventpoll结构体放在file->private_data了里面。
*/
ep = file->private_data;
down_write(&ep->sem);
/* Try to lookup the file inside our hash table */
epi = ep_find(ep, tfile, fd);
// 7. 具体的逻辑操作
error = -EINVAL;
switch (op) {
// 添加
case EPOLL_CTL_ADD:
if (!epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tfile, fd);
} else
error = -EEXIST;
break;
// 删除
case EPOLL_CTL_DEL:
if (epi)
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
// 修改
case EPOLL_CTL_MOD:
if (epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
/*
* The function ep_find() increments the usage count of the structure
* so, if this is not NULL, we need to release it.
*/
if (epi)
ep_release_epitem(epi);
up_write(&ep->sem);
eexit_3:
fput(tfile);
eexit_2:
fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
current, epfd, op, fd, event, error));
return error;
}
上面的逻辑很简单
- 验证输入有效性
逻辑上,只需要了解添加即可。epoll的添加是理解整个流程的关键
epoll添加
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
struct file *tfile, int fd)
{
int error, revents, pwake = 0;
unsigned long flags;
struct epitem *epi;
struct ep_pqueue epq;
error = -ENOMEM;
if (!(epi = EPI_MEM_ALLOC()))
goto eexit_1;
/* Item initialization follow here ... */
EP_RB_INITNODE(&epi->rbn);
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->txlink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
EP_SET_FFD(&epi->ffd, tfile, fd);
epi->event = *event;
atomic_set(&epi->usecnt, 1);
epi->nwait = 0;
/* 初始化polltable,当调用poll的时候,会调用ep_ptable_queue_proc函数将自身加入等待队列中 */
epq.epi = epi;
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
/*
* 将epq.pt的结构体传入tfile进行poll,poll最终调用ep_ptable_queue_proc函数。
*/
revents = tfile->f_op->poll(tfile, &epq.pt);
/*
* We have to check if something went wrong during the poll wait queue
* install process. Namely an allocation for a wait queue failed due
* high memory pressure.
*/
if (epi->nwait < 0)
goto eexit_2;
/* 操作tfile,把当前项加入到epoll列表中。
*/
spin_lock(&tfile->f_ep_lock);
list_add_tail(&epi->fllink, &tfile->f_ep_links);
spin_unlock(&tfile->f_ep_lock);
/* We have to drop the new item inside our item list to keep track of it */
write_lock_irqsave(&ep->lock, flags);
/* Add the current item to the rb-tree */
ep_rbtree_insert(ep, epi);
/* 如果已经有就绪的,就唤醒epollwait等待队列和poll等待队列 */
if ((revents & event->events) && !EP_IS_LINKED(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
/* Notify waiting tasks that events are available */
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
current, ep, tfile, fd));
return 0;
eexit_2:
ep_unregister_pollwait(ep, epi);
/*
* We need to do this because an event could have been arrived on some
* allocated wait queue.
*/
write_lock_irqsave(&ep->lock, flags);
if (EP_IS_LINKED(&epi->rdllink))
EP_LIST_DEL(&epi->rdllink);
write_unlock_irqrestore(&ep->lock, flags);
EPI_MEM_FREE(epi);
eexit_1:
return error;
}
整理一下,向epoll添加一个描述符主要步骤如下:
构建epitem,epitem之后会加入到eventpoll.rbr中。
调用init_poll_funcptr,将ep_ptable_queue_proc函数指针赋值给poll_table的qproc,poll_table记为epq.pt,在file的poll函数中,可以传入poll_table作为参数,poll函数会主动调用poll_table的qproc函数。
poll_table的结构体如下:
```C
/**
*@param f:poll的file指针
*@param whead f的等待队列
*@param pt
/
typedef void (poll_queue_proc)(struct file f, wait_queue_head_t whead, struct poll_table_struct *pt);
typedef struct poll_table_struct {
poll_queue_proc qproc;
} poll_table;
```
poll函数原型
C // 当上层传入pt结构体时,驱动函数当调用poll_table_struct.qproc来实现阻塞队列的添加工作。 unsigned int (*poll) (struct file *f, struct poll_table_struct *pt);
?
- 调用待监控的文件的poll函数,按第2步所说,poll函数规范的实现应该最终会调用到ep_ptable_queue_proc函数,ep_ptable_queue_proc主要是初始化一个等待队列项(以ep_ptable_queue_proc为回调函数),然后将等待队列项塞到驱动的等待队列中。ep_ptable_queue_proc注释如下:
struct __wait_queue {
unsigned int flags;
#define WQ_FLAG_EXCLUSIVE 0x01
// 线程指针,如果func为默认的执行函数,这个需要赋值。
struct task_struct * task;
// 等待队列唤醒执行的函数
wait_queue_func_t func;
struct list_head task_list;
};
typedef struct __wait_queue wait_queue_t;
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
poll_table *pt)
{
// 这是一个特殊的宏操作,因为pt和epitem是包含在ep_queue结构体里面的,所以可以根据偏移取同级别的epitem。
struct epitem *epi = EP_ITEM_FROM_EPQUEUE(pt);
struct eppoll_entry *pwq;
if (epi->nwait >= 0 && (pwq = PWQ_MEM_ALLOC())) {
// 初始化一个等待队列项,并且设置当等待队列唤醒时的执行函数为ep_poll_callback
// 这个很关键。等下我们分析这个ep_poll_call
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
pwq->whead = whead;
pwq->base = epi;
// 把刚创建的等待队列项加入到等待队列中。
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
epi->nwait++;
} else {
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
static inline void init_waitqueue_func_entry(wait_queue_t *q,
wait_queue_func_t func)
{
q->flags = 0;
q->task = NULL;
q->func = func;
}
- 至此,添加一个文件描述符到epoll监控内的流程完成了,总的来讲,就是在对应的file中设置等待队列。等待回调ep_poll_callback,。至于对应的file用什么机制来确保文件异步就绪,epoll不管。不过一般是通过中断来实现的。
epoll模型的poll函数实现:
* * structures and helpers for f_op->poll implementations */ typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct poll_table_struct *); typedef struct poll_table_struct { poll_queue_proc qproc; } poll_table; //poll_wait函数实现,其实内部调用了poll_table.qproc成员,poll_table.qproc在epoll中对应了上面的ep_ptable_queue_proc函数 static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p) { if (p && wait_address) p->qproc(filp, wait_address, p); } // epollevent的poll函数实现,驱动的逻辑都差不多,有参考意义 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) { unsigned int pollflags = 0; unsigned long flags; struct eventpoll *ep = file->private_data; /* 1. 加入等待队列中*/ poll_wait(file, &ep->poll_wait, wait); /* Check our condition */ read_lock_irqsave(&ep->lock, flags); if (!list_empty(&ep->rdllist)) pollflags = POLLIN | POLLRDNORM; read_unlock_irqrestore(&ep->lock, flags); return pollflags; }
?
sys_epoll_wait
了解了ep_insert的话,这个其实就很容易理解了:
static struct file_operations eventpoll_fops = {
.release = ep_eventpoll_close,
.poll = ep_eventpoll_poll
};
/*
* sys_epoll_wait实现
*/
asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
int maxevents, int timeout)
{
int error;
struct file *file;
struct eventpoll *ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
current, epfd, events, maxevents, timeout));
/**
* 验证输入的代码忽略
*/
error = -EBADF;
// 1. 根据epfd获得对应的file
file = fget(epfd);
if (!file)
goto eexit_1;
// 2. 验证是否是epoll的file,就是验证f_op是否等于eventpoll_fops
error = -EINVAL;
if (!IS_FILE_EPOLL(file))
goto eexit_2;
/*
* 3. 取eventpoll结构体
*/
ep = file->private_data;
/* 4. 调用ep_poll实现具体逻辑。不要被ep_poll名字忽悠了,这个不是poll实现 */
error = ep_poll(ep, events, maxevents, timeout);
eexit_2:
fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
current, epfd, events, maxevents, timeout, error));
return error;
}
epoll_wait最终调用ep_poll来实现核心功能。
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout)
{
int res, eavail;
unsigned long flags;
long jtimeout;
wait_queue_t wait;
/*
* 1. 内核中是是用滴答数作为时间计时的,所以下面代码是转换时间为滴答数。
*/
jtimeout = timeout == -1 || timeout > (MAX_SCHEDULE_TIMEOUT - 1000) / HZ ?
MAX_SCHEDULE_TIMEOUT: (timeout * HZ + 999) / 1000;
retry:
write_lock_irqsave(&ep->lock, flags);
res = 0;
// 1. 如果就绪队列是空的,就进行等待
if (list_empty(&ep->rdllist)) {
/*
* 2. 把当前调用epoll_wait的线程加入到wq等待队列中,当ep_poll_callback()会唤醒这个线程。
* current是当前线程的代表,最终是从cpu中取得的。
*/
init_waitqueue_entry(&wait, current);
add_wait_queue(&ep->wq, &wait);
//死循环处理。
for (;;) {
/*
* 3. 设置为可打断,方便处理信号。
*/
set_current_state(TASK_INTERRUPTIBLE);
if (!list_empty(&ep->rdllist) || !jtimeout)
break;
// 4. 处理未处理信号
if (signal_pending(current)) {
res = -EINTR;
break;
}
write_unlock_irqrestore(&ep->lock, flags);
// 类似于睡眠。其返回值为剩余时间。该函数会将该cpu的任务切换掉。所以下一行代码在重新调度前不会执行。
jtimeout = schedule_timeout(jtimeout);
write_lock_irqsave(&ep->lock, flags);
}
//把调用线程从等待队列删除。
remove_wait_queue(&ep->wq, &wait);
set_current_state(TASK_RUNNING);
}
eavail = !list_empty(&ep->rdllist);
write_unlock_irqrestore(&ep->lock, flags);
/*
* 将events数据传回用户空间
*/
if (!res && eavail &&
!(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
goto retry;
return res;
}
ep_poll的步骤如下:
转换超时时间为cpu滴答计数。
查询就绪队列是否就绪,如果有就绪的,就直接返回给上层。
如果没有就绪的,就等待。
a. 把调用线程添加到eventpoll.wq队列中。
b. 设置自身为可打断状态
c. 检查现在是否有就绪,有的话就直接返给上层。
d. 处理信号。
c. 发起调度,将自身切换为阻塞状态。等待被唤醒。唤醒的方式有:ep_poll_callback唤醒eventpoll.wq队列或者其他中断唤醒。ep_poll_callback是sys_epoll_ctl添加epoll监听的时候设置的等待队列回调。其实现为:
static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int pwake = 0;
unsigned long flags;
// 1. 这是一个特殊的宏操作,因为wait和epitem是包含在ep_queue结构体里面的,所以可以根据偏移取同级别的epitem。
struct epitem *epi = EP_ITEM_FROM_WAIT(wait);
// 2. 获得对应的eventpoll
struct eventpoll *ep = epi->ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
current, epi->file, epi, ep));
write_lock_irqsave(&ep->lock, flags);
....
// 3. 将就绪item加入到就绪
list_add_tail(&epi->rdllink, &ep->rdllist);
is_linked:
/*
* 4. 唤醒wq等待队列(就是唤醒等待epoll_wait的线程)
*/
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
is_disabled:
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
return 1;
}