背包问题很经典了,《背包问题九讲》讲的非常详细,建议看一看。
在这里,我想给出0-1背包和完全背包压缩空间后的实现,即只要一维数组。
0-1背包,与完全背包仅仅只是内循环的次序不同,故而代码基本相同。
希望可以帮的上你。
0-1背包:
1 #include<bits/stdc++.h> 2 using namespace std; 3 int f[1001]; 4 int w[1001]; 5 int v[1001]; 6 int main(){ 7 int n; 8 int W; 9 cin>>n>>W; 10 for(int i = 1;i<=n;i++){ 11 cin>>w[i]>>v[i]; 12 } 13 memset(f,-10000000,sizeof(f)); 14 for(int i = 1;i<=n;i++){ 15 for(int j = W;j>=0;j--){ 16 f[j] = max(f[j],f[j-w[i]]+v[i]); 17 } 18 } 19 int max = 0; 20 for(int i = 1;i<=n;i++){ 21 if(f[i]>max){ 22 max = f[i]; 23 } 24 } 25 printf("%d",max); 26 }
完全背包:1 #include<bits/stdc++.h> 2 using namespace std; 3 int f[1001]; 4 int w[1001]; 5 int v[1001]; 6 int main(){ 7 int n; 8 int W; 9 cin>>n>>W; 10 for(int i = 1;i<=n;i++){ 11 cin>>w[i]>>v[i]; 12 } 13 memset(f,-10000000,sizeof(f)); 14 for(int i = 1;i<=n;i++){ 15 for(int j = 0;j<=W;j++){ 16 f[j] = max(f[j],f[j-w[i]]+v[i]); 17 } 18 } 19 int max = 0; 20 for(int i = 1;i<=n;i++){ 21 if(f[i]>max){ 22 max = f[i]; 23 } 24 } 25 printf("%d",max); 26 }