在计算机中,没有任何数据类型是固定的,完全取决于如何看待这片数据的内存区域。
在numpy.ndarray.view中,提供对内存区域不同的切割方式,来完成数据类型的转换,而无须要对数据进行额外的copy,可以节约内存空间。
使用示例
import numpy as np x = np.arange(10, dtype=np.int) print(‘An integer array:‘, x) print (‘An float array:‘, x.view(np.float))
An integer array: [0 1 2 3 4 5 6 7 8 9]
[ 0.00000000e+000 4.94065646e-324 9.88131292e-324 1.48219694e-323 1.97626258e-323 2.47032823e-323 2.96439388e-323 3.45845952e-323 3.95252517e-323 4.44659081e-323]
An float array: