码迷,mamicode.com
首页 > 编程语言 > 详细

深度优先搜索算法的概念

时间:2018-04-10 10:58:23      阅读:320      评论:0      收藏:0      [点我收藏+]

标签:str   fill   ber   策略   区别   tle   第一个   ext   递归算法   

深度优先搜索算法的概念

  与广度优先搜索算法不同,深度优先搜索算法类似与树的先序遍历。这种搜索算法所遵循的搜索策略是尽可能“深”地搜索一个图。它的基本思想如下:首先访问图中某一个起始顶点v,然后由v出发,访问与v相邻且未被访问的任一顶点w1,再访问与w1邻接且未被访问的任一顶点w2,….重复上述过程。当不能再继续向下访问时,依次退回到最近被访问的顶点,若它还有邻接顶点未被访问过,则从该点开始继续上述搜索过程,直到图中所有顶点均被访问过为止(还是举相同的例子,从你开始遍历你的所有亲戚,例如:先访问你的儿子,再从你的儿子继续访问你的儿子的儿子,直到你的儿子是最后一个顶点,再回退回上一层,访问你儿子的女儿,再访问你儿子的女儿的儿子….依此类推,直到你的所有亲戚都被访问过一次为止,这和广度优先搜索的算法区别还是很大的)。 
  

算法伪代码

  DFS采用的是递归的过程,所以这个过程需要一个递归工作的辅助栈,伪代码如下: 
  

bool visited[MAX_VERTEX_NUM];//访问标记数组

void DFSTraverse(Graph G){
//对图G进行深度优先遍历,访问函数为visit()
    for(v=0;v<G.vexnum;++i)
        visited[v]=false;//初始化所有顶点的数据,false表示未曾访问过
    for(v=0;v<G.vexnum;++v)
        if(!visited[v])
            DFS(G,v);//这里从0遍历到最后一个顶点是为了防止有极端情况出现:可能存在顶点wi无法从顶点w0遍历到,所以需要对它也调用一次DFS算法
}

void DFS(Graph G,int v){
//从顶点v出发,采用递归的思想,深度优先遍历图G
    visit(v);//访问顶点v
    visited[v]=true;//设置这个顶点为已经访问过

    for(w=FirstNeighbor(G,v);w>=0;w=NextNeighbor(G,v,w))
        if(!visited[w])
            DFS(G,w);//递归调用查找第一个未被访问的邻接顶点
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

实例及分析

  技术分享图片 
  首先访问a,并置a为已经访问;然后访问与a邻接且未被访问的顶点b,置b为已经访问,然后访问与b邻接且未被访问的顶点d,置d为已经访问。此时d已经没有未被访问过的邻接点,这时候返回上一个访问过的顶点b,访问与其邻接且未被访问的顶点e,置e为已经访问……。依此类推,直到途中所有的顶点都被访问一次且仅仅被访问一次,遍历结果为abdehcfg。

DFS算法的性能分析

  DFS算法是一个递归算法,需要借助一个递归工作栈,所以它的空间复杂度是O(|V|)。 
  遍历图的过程实际上是对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用的存储结构,当以邻接矩阵表示时,查找每个顶点的临界点所需时间为O(|V|),故总的时间复杂度为O(|V|2)。当以邻接表表示时,查找所有顶点的邻接点所需时间为O(|E|),访问顶点所需时间为O(|V|),此时,总的时间复杂度为O(|V|+|E|)。

深度优先搜索算法的概念

标签:str   fill   ber   策略   区别   tle   第一个   ext   递归算法   

原文地址:https://www.cnblogs.com/SeaTop/p/8776277.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!