码迷,mamicode.com
首页 > 编程语言 > 详细

Python中文分词 jieba

时间:2018-04-14 20:44:09      阅读:529      评论:0      收藏:0      [点我收藏+]

标签:多个   马尔科夫   nic   精确   nbsp   并行计算   ssi   问题   tags   

三种分词模式与一个参数

以下代码主要来自于jieba的github,你可以在github下载该源码

import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True, HMM=False)  #jieba.cut返回的是一个生成器,而用jieba.lcut会直接返回list
print("Full Mode: " + "/ ".join(seg_list))  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False, HMM=True)
print("Default Mode: " + "/ ".join(seg_list))  # 默认模式

seg_list = jieba.cut("他来到了网易杭研大厦", HMM=False)
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造", HMM=False)  # 搜索引擎模式
print(", ".join(seg_list))

# jieba.cut的默认参数只有三个,jieba源码如下
# cut(self, sentence, cut_all=False, HMM=True)
# 分别为:输入文本 是否为全模式分词 与是否开启HMM进行中文分词

技术分享图片

关键词提取

from os import path
import jieba.analyse as analyse

d = path.dirname(__file__)

text_path = txt/lz.txt #设置要分析的文本路径
text = open(path.join(d, text_path)).read()

for key in analyse.extract_tags(text,50, withWeight=False):
# 使用jieba.analyse.extract_tags()参数提取关键字,默认参数为50
    print key.encode(utf-8)
    # 设置输出编码为utf-8不然在因为win下控制台默认中文字符集为gbk,所以会出现乱码
    # 当withWeight=True时,将会返回number类型的一个权重值(TF-IDF)

技术分享图片

运行结果如图所示,但是同样的我们也发现了一些问题,比如: 
问题一: 
分词错误,在运行结果中中”路明非”(龙族男主)被分成了”路明”和”明非”啷个中文词语,这是因为jieba的词库中并不含有该词的原因,同样的原因以及jieba词库比较老,因而在许多文本分词时都会产生这种情况,而这个问题我们将在第五个模块”三种可以让分词更准确的方法”解决 
问题二: 
出现非实意词语,无论在哪种语言中,都会存在大量的非实意单词,这一类词云我们需要在进行中文分词时进行去除停用词,这个问题将在下一个模块中解决

中文歧义测试与去除停用词

本段代码主要来自于《机器学习实践指南(第二版))》,其作者为麦好,ps:这是一本好书

import jieba
TestStr = "2010年底部队友谊篮球赛结束"
# 因为在汉语中没有空格进行词语的分隔,所以经常会出现中文歧义,比如年底-底部-部队-队友
# jieba 默认启用了HMM(隐马尔科夫模型)进行中文分词,实际效果不错

seg_list = jieba.cut(TestStr, cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式

seg_list = jieba.cut(TestStr, cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 默认模式
# 在默认模式下有对中文歧义有较好的分类方式

seg_list = jieba.cut_for_search(TestStr) # 搜索引擎模式
print "cut for Search","/".join(seg_list)

技术分享图片

去除文本中的停用词

import sys
import jieba
from os import path

d = path.dirname(__file__)
stopwords_path = stopwords\stopwords1893.txt # 停用词词表

text_path = txt/lz.txt #设置要分析的文本路径
text = open(path.join(d, text_path)).read()

def jiebaclearText(text):
    mywordlist = []
    seg_list = jieba.cut(text, cut_all=False)
    liststr="/ ".join(seg_list)
    f_stop = open(stopwords_path)
    try:
        f_stop_text = f_stop.read( )
        f_stop_text=unicode(f_stop_text,utf-8)
    finally:
        f_stop.close( )
    f_stop_seg_list=f_stop_text.split(\n)
    for myword in liststr.split(/):
        if not(myword.strip() in f_stop_seg_list) and len(myword.strip())>1:
            mywordlist.append(myword)
    return ‘‘.join(mywordlist)

text1 = jiebaclearText(text)
print text1

技术分享图片

三种可以让分词更准确的方法

方案一,在jieba中添加中文词语: 
这种方法可以有效的解决之前龙族男主”路明非”被分为”路明”和”明非”两个词的情况

#这个只需要在源代码中加入一个语句即可
import sys
import jieba
from os import path

d = path.dirname(__file__)
stopwords_path = stopwords\stopwords1893.txt # 停用词词表

jieba.add_word(路明非)
# 添加的自定义中文语句的代码在这里
# 添加的自定义中文语句的代码在这里
# 添加的自定义中文语句的代码在这里

text_path = txt/lz.txt #设置要分析的文本路径
text = open(path.join(d, text_path)).read()

def jiebaclearText(text):
    mywordlist = []
    seg_list = jieba.cut(text, cut_all=False)
    liststr="/ ".join(seg_list)
    f_stop = open(stopwords_path)
    try:
        f_stop_text = f_stop.read( )
        f_stop_text=unicode(f_stop_text,utf-8)
    finally:
        f_stop.close( )
    f_stop_seg_list=f_stop_text.split(\n)
    for myword in liststr.split(/):
        if not(myword.strip() in f_stop_seg_list) and len(myword.strip())>1:
            mywordlist.append(myword)
    return ‘‘.join(mywordlist)

text1 = jiebaclearText(text)
print text1

技术分享图片

方案二,添加自定义词库: 
下面的代码主要来自于jieba的github源码,你可以在github下载该例子

#encoding=utf-8
from __future__ import print_function, unicode_literals
import sys
sys.path.append("../")
import jieba
jieba.load_userdict("userdict.txt")
# jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。示例如下:
# import jieba
# jieba.initialize() #手动初始化(可选)
# 在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
# 注意用户词典为主词典即优先考虑的词典,原词典此时变为非主词典
# jieba.set_dictionary(‘data/dict.txt.big‘)

import jieba.posseg as pseg

test_sent = (
"李小福是创新办主任也是云计算方面的专家; 什么是八一双鹿\n"
"例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类\n"
"「台中」正確應該不會被切開。mac上可分出「石墨烯」;此時又可以分出來凱特琳了。"
)
words = jieba.cut(test_sent)
print(/.join(words))

print("="*40)

result = pseg.cut(test_sent)
# pseg.cut 切分,并显示词性
# 下面是userdict.txt的内容,如果不加入这个词库,那么在运行结果中,云计算,创新办等词都将无法识别
‘‘‘
云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz
八一双鹿 3 nz
台中
凱特琳 nz
Edu Trust认证 2000
‘‘‘

技术分享图片

下面这段代码主要来自于jieba的github,你可以在github下载该源码

print(=*40)
print(添加自定义词典/调整词典)
print(-*40)

print(/.join(jieba.cut(如果放到post中将出错。, HMM=False)))
#如果/放到/post/中将/出错/。
# 调整词典使 中将 变为中/将
print(jieba.suggest_freq((, ), True))
#494
print(/.join(jieba.cut(如果放到post中将出错。, HMM=False)))
#如果/放到/post/中/将/出错/。
print(/.join(jieba.cut(「台中」正确应该不会被切开, HMM=False)))
#「/台/中/」/正确/应该/不会/被/切开
print(jieba.suggest_freq(台中, True))
print(jieba.suggest_freq(台中, True))
#69
# 调整词典使 台中 不被分词为台/中
print(/.join(jieba.cut(「台中」正确应该不会被切开, HMM=False)))
#「/台中/」/正确/应该/不会/被/切开

并行计算

下面这段代码主要来自于jieba的github,你可以在github下载该源码

原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升

基于python自带的multiprocessing模块,目前暂不支持windows

import sys
import time
sys.path.append("../../")
import jieba

jieba.enable_parallel() # 关闭并行分词
jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数 

url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))

t2 = time.time()
tm_cost = t2-t1

log_f = open("1.log","wb")
log_f.write(words.encode(utf-8))

print(speed %s bytes/second % (len(content)/tm_cost))

实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。

 

文章转自:http://blog.csdn.net/fontthrone https://blog.csdn.net/FontThrone/article/details/72782499

Python中文分词 jieba

标签:多个   马尔科夫   nic   精确   nbsp   并行计算   ssi   问题   tags   

原文地址:https://www.cnblogs.com/zongfa/p/8834533.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!