标签:org pid netcat key streaming sock mda 依赖 master
前一篇中数据源采用的是从一个socket中拿数据,有点属于“旁门左道”,正经的是从kafka等消息队列中拿数据!
主要支持的source,由官网得知如下:
获取数据的形式包括推送push和拉取pull
1.push的方式
更推荐的是pull的拉取方式
引入依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
编写代码:
package com.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Created by ZX on 2015/6/22.
*/
object FlumePushWordCount {
def main(args: Array[String]) {
val host = args(0)
val port = args(1).toInt
val conf = new SparkConf().setAppName("FlumeWordCount")//.setMaster("local[2]")
// 使用此构造器将可以省略sc,由构造器构建
val ssc = new StreamingContext(conf, Seconds(5))
// 推送方式: flume向spark发送数据(注意这里的host和Port是streaming的地址和端口,让别人发送到这个地址)
val flumeStream = FlumeUtils.createStream(ssc, host, port)
// flume中的数据通过event.getBody()才能拿到真正的内容
val words = flumeStream.flatMap(x => new String(x.event.getBody().array()).split(" ")).map((_, 1))
val results = words.reduceByKey(_ + _)
results.print()
ssc.start()
ssc.awaitTermination()
}
}
flume-push.conf——flume端配置文件:
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # source a1.sources.r1.type = spooldir a1.sources.r1.spoolDir = /export/data/flume a1.sources.r1.fileHeader = true # Describe the sink a1.sinks.k1.type = avro #这是接收方 a1.sinks.k1.hostname = 192.168.31.172 a1.sinks.k1.port = 8888 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
2.pull的方式
属于推荐的方式,通过streaming来主动拉取flume产生的数据
编写代码:(依赖同上)
package com.streaming
import java.net.InetSocketAddress
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
object FlumePollWordCount {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("FlumePollWordCount").setMaster("local[2]")
val ssc = new StreamingContext(conf, Seconds(5))
//从flume中拉取数据(flume的地址),通过Seq序列,里面可以new多个地址,从多个flume地址拉取
val address = Seq(new InetSocketAddress("172.16.0.11", 8888))
val flumeStream = FlumeUtils.createPollingStream(ssc, address, StorageLevel.MEMORY_AND_DISK)
val words = flumeStream.flatMap(x => new String(x.event.getBody().array()).split(" ")).map((_,1))
val results = words.reduceByKey(_+_)
results.print()
ssc.start()
ssc.awaitTermination()
}
}
配置flume
通过拉取的方式需要flume的lib目录中有相关的JAR(要通过spark程序来调flume拉取),通过官网可以得知具体的JAR信息:
配置flume:
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # source a1.sources.r1.type = spooldir a1.sources.r1.spoolDir = /export/data/flume a1.sources.r1.fileHeader = true # Describe the sink(配置的是flume的地址,等待拉取) a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink a1.sinks.k1.hostname = mini1 a1.sinks.k1.port = 8888 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
启动flume,然后启动IDEA中的spark streaming:
bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console
// -D后参数可选
大数据入门第二十四天——SparkStreaming(2)与flume、kafka整合
标签:org pid netcat key streaming sock mda 依赖 master
原文地址:https://www.cnblogs.com/jiangbei/p/8856750.html