码迷,mamicode.com
首页 > 编程语言 > 详细

第四百一十四节,python常用算法学习

时间:2018-04-24 11:12:41      阅读:183      评论:0      收藏:0      [点我收藏+]

标签:技术   条件   line   class   要求   举例   分解   order   .com   

本节内容

  1. 算法定义
  2. 时间复杂度
  3. 空间复杂度
  4. 常用算法实例

1.算法定义 

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

一个算法应该具有以下七个重要的特征:

①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;

②确切性(Definiteness):算法的每一步骤必须有确切的定义;

③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输     入是指算法本身定出了初始条件;

④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没       有输出的算法是毫无意义的;

⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行       的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);

⑥高效性(High efficiency):执行速度快,占用资源少;

⑦健壮性(Robustness):对数据响应正确。

 

叫卖录音网
录音网站

 

2. 时间复杂度

计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用大O符号(大O符号(Big O notation)是用于描述函数渐进行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。)表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。

大O,简而言之可以认为它的含义是“order of”(大约是)

无穷大渐近
大O符号在分析算法效率的时候非常有用。举个例子,解决一个规模为 n 的问题所花费的时间(或者所需步骤的数目)可以被求得:T(n) = 4n^2 - 2n + 2。
当 n 增大时,n^2; 项将开始占主导地位,而其他各项可以被忽略——举例说明:当 n = 500,4n^2; 项是 2n 项的1000倍大,因此在大多数场合下,省略后者对表达式的值的影响将是可以忽略不计的。

 

常数阶O(1)

常数又称定数,是指一个数值不变的常量,与之相反的是变量

为什么下面算法的时间复杂度不是O(3),而是O(1)。

1
2
3
int sum = 0,n = 100; /*执行一次*/ 
sum = (1+n)*n/2; /*执行一次*/ 
printf("%d", sum); /*行次*/

这个算法的运行次数函数是f(n)=3。根据我们推导大O阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。

另外,我们试想一下,如果这个算法当中的语句sum=(1+n)*n/2有10句,即:

1
2
3
4
5
6
7
8
9
10
11
12
int sum = 0, n = 100; /*执行1次*/ 
sum = (1+n)*n/2; /*执行第1次*/ 
sum = (1+n)*n/2; /*执行第2次*/ 
sum = (1+n)*n/2; /*执行第3次*/ 
sum = (1+n)*n/2; /*执行第4次*/ 
sum = (1+n)*n/2; /*执行第5次*/ 
sum = (1+n)*n/2; /*执行第6次*/ 
sum = (1+n)*n/2; /*执行第7次*/ 
sum = (1+n)*n/2; /*执行第8次*/ 
sum = (1+n)*n/2; /*执行第9次*/ 
sum = (1+n)*n/2; /*执行第10次*/ 
printf("%d",sum); /*执行1次*/

事实上无论n为多少,上面的两段代码就是3次和12次执行的差异。这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。

注意:不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其他任何数字,这是初学者常常犯的错误。

 

推导大O阶方法

1.用常数1取代运行时间中的所有加法常数

2.在修改后的运行次数函数中,只保留最高阶项

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数

  

对数阶O(log2n) 

对数

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN, 。其中,a叫做对数的底数,N叫做真数。
5^2 = 25 , 记作 2= log5 25 
对数是一种运算,与指数是互逆的运算。例如

① 3^2=9 <==> 2=log<3>9;

② 4^(3/2)=8 <==> 3/2=log<4>8;

③ 10^n=35 <==> n=lg35。为了使用方便,人们逐渐把以10为底的常用对数记作lgN

 

对数阶

1
2
3
4
5
6
7
8
9
int count = 1;
 
while (count < n)
 
{   
 
count = count * 2; /* 时间复杂度为O(1)的程序步骤序列 */
 
}


由于每次count乘以2之后,就距离n更近了一分。

也就是说,有多少个2相乘后大于n,则会退出循环。

由2^x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。

 

线性阶O(n)  

执行时间随问题规模增长呈正比例增长

1
2
3
4
5
data = [ 8,3,67,77,78,22,6,3,88,21,2]
find_num = 22
for i in data:
    if i == 22:
        print("find",find_num,i )

 

线性对数阶O(nlog2n)

 

 

平方阶O(n^2)

1
2
3
4
for i in range(100):
 
    for k in range(100):
        print(i,k)

  

立方阶O(n^3)
k次方阶O(n^k),
指数阶O(2^n)。
随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。  

 技术分享图片

第四百一十四节,python常用算法学习

标签:技术   条件   line   class   要求   举例   分解   order   .com   

原文地址:https://www.cnblogs.com/adc8868/p/8926183.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!