标签:roo 补全 sim 属性 epo 修改 统计 分段 too
install.packages("maptools")#画地图的包 install.packages("spdep")#空间统计,moran‘I install.packages("tripack") install.packages("RANN") library("maptools") library("spdep") library("tripack") library("RANN") #读空间数据 rdata <- readShapePoly("D:/data/cairo.shp")#读取shp面数据 names(rdata)#显示数据字段名字 head(rdata@data)#显示属性表 #按照字段两幅画图 spplot(rdata[c("TFR96_03","TFR86_03") ], main = "spatial distribute of TFR96_03",#图名 xlab = "X Coords",#横坐标名字 ylab = "Y Coords",#纵坐标名字 cut = 30#分段 ) #按照字段一幅画图 spplot(rdata["TFR96_03"], main = "spatial distribute of TFR96_03",#图名 xlab = "X Coords",#横坐标名字 ylab = "Y Coords",#纵坐标名字 cut = 30#分段 ) #按边邻接角邻接生成邻居(方式一) queen_nb <- poly2nb(rdata, queen = TRUE)#有8个 rook_nb <- poly2nb(rdata, queen = FALSE)#有4个 #获取中心点坐标编号 coords <- coordinates(rdata) #地图数据转数据框-->生成ID IDs <- row.names(as.data.frame(rdata)) #设置画参数 oopar <- par(mfrow = c(1,2), mar = c(3,3,1,1)+0.1) #画边界 plot(rdata, border = "grey", main = "Queen-Style") #add修改上一个图 plot(queen_nb, coords, col = "dodgerblue", add = TRUE, pch = 19, cex = 0.5) #生成邻接关系(方式二)knearneigh()定义K-near k4_nb <- knn2nb(knearneigh(coords, k = 4), row.names = IDs)
#识别邻接关系是否对称 is.symmetric.nb(k4_nb, verbose = FALSE, force = TRUE) #补全邻接关系 n.comp.nb(k4_nb)$nc k4_w <- nb2listw(k4_nb) #计算moran‘I moran.test(rdata$TFR96_03, listw = k4_w) #计算moran‘I (蒙特卡洛方法) moran.mc(rdata$TFR96_03, listw = k4_w, nsim = 999)
标签:roo 补全 sim 属性 epo 修改 统计 分段 too
原文地址:https://www.cnblogs.com/lichunl/p/8953614.html