标签:void final 情况下 部分 函数 microsoft 意义 overflow 简单
提起对于集合的遍历,恐怕下面的这种方式已经是一种思维定式了吧:
final List<String> friends = Arrays.asList("Brian", "Nate", "Neal", "Raju", "Sara", "Scott");
for(int i = 0; i < friends.size(); i++) {
System.out.println(friends.get(i));
}
但是仔细想想,以上的代码似乎出现了过多的细节,比如循环变量i的出现。在做简单的遍历操作时,循环变量实际上是不必要的,只有在对某个特定位置的元素执行某个特殊操作时,循环变量的使用才有意义。所以,在Java中引入了增强的for循环,在这种循环方式中,循环变量是不必要的:
for(String name : friends) {
System.out.println(name);
}
这种方式,在实现细节上使用的是iterator接口和它的hasNext(),next()方法。
无论使用哪种for循环,它们仍然使用了外部遍历器(External Iterator)。即在for循环中,你总是有办法通过诸如break,continue等方式来控制遍历的过程。
与外部遍历器相对的,是内部遍历器(Internal Iterator)。在Java 8中,Iterable接口被增强了,现在该接口拥有一个forEach方法用来实现内部遍历器。forEach方法会接受一个Consumer接口类型作为参数,该接口是一个函数式接口(Functional Interface),它是内部遍历器的实现方式。关于函数式接口,可以参考上一篇文章。
friends.forEach(new Consumer<String>() {
public void accept(final String name) {
System.out.println(name);
}
});
很显然,上述代码中使用的匿名类在Java 8中并不是最好的方案,在这种场景下Lambda表达式是更好的选择:
friends.forEach((final String name) -> System.out.println(name));
forEach方法本身是一个高阶函数,因为它接受了一个Lambda表达式作为其参数,而Lambda表达式在本质上则是一个函数。在Lambda表达式的左边,声明了一个String类型的变量name,它代表了集合中的元素。而箭头右边的代码则表达了对于该元素应该执行何种操作。forEach之所以被称为内部遍历器,原因在于一旦它开始执行了,那么遍历操作就不能够被轻易中断。
同时,借助Java编译器的类型推导(Type Inference)特性,Lambda表达式能够被进一步简化如下:
friends.forEach((name) -> System.out.println(name));
此时,编译器能够通过运行时的上下文知道这个name变量的类型是String。
另外,当Lambda表达式左端只接受一个变量的时候,括号也是可以省略的:
friends.forEach(name -> System.out.println(name));
但是用类型推导有一个不好的地方,就是参数不会自动被final修饰。因此,在Lambda表达式右端,是可以对参数进行修改的,然而这种行为是不被倡导的。
上面的代码已经足够简洁了,但是还有更简洁的方法,那就是使用方法引用:
friends.forEach(System.out::println);
使用这种方式甚至不需要写出Lambda表达式的左端参数部分。关于方法引用的详细情况,会在以后进行介绍。
与使用外部遍历不同,使用内部遍历的好处在于:
将一个集合通过某种计算得到另一个集合是一种常用的操作,也是Lambda表达式的用武之地。 比如,以将一个名字集合转换为首字母大写了的名字集合为例。
为了不改变原集合,最“自然”的方式如下:
final List<String> uppercaseNames = new ArrayList<String>();
for(String name : friends) {
uppercaseNames.add(name.toUpperCase());
}
以上代码使用了外部遍历器,即for循环来完成集合操作。而将命令式代码转变为声明式代码(也就是函数式)的首要任务就是观察遍历的使用方式,尽可能地将外部遍历更改为内部遍历:
final List<String> uppercaseNames = new ArrayList<String>();
friends.forEach(name -> uppercaseNames.add(name.toUpperCase()));
System.out.println(uppercaseNames);
好了,现在我们使用了forEach来代替for循环。但是感觉代码并没有变的简洁多少。 我们可以使用其他的函数式接口(Functional Interface)来实现集合的转换。事实上,map方法比forEach方法更胜任这一类转换工作:
friends.stream()
.map(name -> name.toUpperCase())
.forEach(name -> System.out.print(name + " "));
System.out.println();
这里使用了一个新的方法叫做stream()。在Java 8中,所有的集合类型都拥有这个方法。该方法的返回值是一个Stream类型的实例,该实例将集合本身包含在内(即上述的friends集合被包含在了stream实例中)。
可以将它理解成一个建立在集合上的iterator,它提供了除了forEach之外的更加高级的方法,如上述的map()。map方法的作用在于,它能够将接受的一个输入序列转换成一个输出序列(即完成转换工作)。这也意味着map方法是存在返回值的,所以后续的forEach方法操作的集合即是map方法返回的集合。
集合的转换操作可以是任意的,比如需要得到每个名字的长度:
friends.stream()
.map(name -> name.length())
.forEach(count -> System.out.print(count + " "));
// 5 4 4 4 4 5
使用方法引用能够对上面的代码进行简化:
friends.stream()
.map(String::toUpperCase)
.forEach(name -> System.out.println(name));
回顾之前我们提到过的,当一个方法接受函数式接口作为参数时,可以传入Lambda表达式或者方法/构造器的引用进行调用。而以上的String::toUpperCase就是一个方法应用。
注意到对该方法进行引用时,省略了其参数信息。这是因为Java编译器在为该方法引用生成实例时,会进行类型推导自动地将集合中的元素作为参数传入到该方法中。
比如,当我们需要得到名字集合中所有以N开头的名字时,最“自然”的实现方式马上就会反映如下:
final List<String> startsWithN = new ArrayList<String>();
for(String name : friends) {
if(name.startsWith("N")) {
startsWithN.add(name);
}
}
但是,我们可以让这一切变得更加简单和优雅:
final List<String> startsWithN = friends.stream()
.filter(name -> name.startsWith("N"))
.collect(Collectors.toList());
对于filter方法,它期待的参数是一个返回boolean类型的Lambda表达式。对于被操作的集合中的每个元素而言,如果Lambda表达式返回的是true,那么就意味着filter后得到的stream实例中是包含该元素的,反之亦然。最后,可以通过调用stream实例的collect方法来将stream实例转换成一个List实例。
比如,当需要对不止一个集合进行操作时:
final long countFriendsStartN = friends.stream().filter(name -> name.startsWith("N")).count();
final long countComradesStartN = comrades.stream().filter(name -> name.startsWith("N")).count();
final long countEditorsStartN = editors.stream().filter(name -> name.startsWith("N")).count();
显而易见,Lambda表达式需要被重用。我们可以将Lambda表达式给保存到一个变量中,就像Java处理其他任何类型的变量一样。问题来了?Lambda表达式的类型是什么呢,在Java这种静态类型语言中,我们不能单单使用诸如var,val就来代表一个Lambda表达式。
对于filter方法接受的Lambda表达式,它是符合Predicate接口类型的,因此可以声明如下:
final Predicate<String> startsWithN = name -> name.startsWith("N");
final long countFriendsStartN = friends.stream().filter(startsWithN).count();
final long countComradesStartN = comrades.stream().filter(startsWithN).count();
final long countEditorsStartN = editors.stream().filter(startsWithN).count();
但是,问题又来了!如果在某些情况下需要检测的不是以N开头,而是以别的字母如B开头呢? 那么,就需要再创建一个Lambda表达式并保存到变量中:
final Predicate<String> startsWithN = name -> name.startsWith("N");
final Predicate<String> startsWithB = name -> name.startsWith("B");
final long countFriendsStartN = friends.stream().filter(startsWithN).count();
final long countFriendsStartB = friends.stream().filter(startsWithB).count();
显然,这并不是长久之计。不能因为需要检测的首字母不同,就创建额外的Lambda表达式。我们需要它进行进一步的抽象。
第一种方法:
public static Predicate<String> checkIfStartsWith(final String letter) {
return name -> name.startsWith(letter);
}
通过一个带参数的方法来得到需要的Lambda表达式。这个方法就是传说中的高阶函数,因为它返回了一个Lambda表达式作为返回值,而Lambda表达式本质上是一个函数。
另外,这里也体现了Java 8中关于Lambda表达式的另外一个特性:闭包和作用域。在以上返回的Lambda表达式中引用了一个letter变量,而这个letter变量则是checkIfStartsWith方法接受的参数,就像JavaScript等拥有闭包特性的语言那样,Java也具有这种特性了。
但是,在Java中利用闭包对变量进行访问时,有需要注意的问题。我们只能访问被final修饰的变量或者本质上是final的变量。正如上面checkIfStartsWith声明的参数被final修饰那样。
这是因为,Lambda表达式可能在任何时候被执行,也可能被任何其他线程执行。所以为了保证不出现竞态条件(Race Condition),需要保证Lambda表达式中引用到的变量不会被改变。
final long countFriendsStartN = friends.stream().filter(checkIfStartsWith("N")).count();
final long countFriendsStartB = friends.stream().filter(checkIfStartsWith("B")).count();
利用上述可以根据要求动态生成Lambda表达式的高阶函数,就可以按照上面这个样子来进行代码重用了。
实际上,使用static来实现以上的高阶函数并不是一个好主意。可以将作用域缩小一些:
final Function<String, Predicate<String>> startsWithLetter =
(String letter) -> {
Predicate<String> checkStartsWith = (String name) -> name.startsWith(letter);
return checkStartsWith;
};
startsWithLetter变量代表的是一个Lambda表达式,该表达式接受一个String作为参数,返回另外一个Lambda表达式。这也就是它的类型Function>所代表的意义。
目前来看,使用这种方式让代码更加复杂了,但是将它简化之后就成了下面这个样子:
final Function<String, Predicate<String>> startsWithLetter = (String letter) -> (String name) -> name.startsWith(letter);
还可以通过省略参数类型进行进一步的简化:
final Function<String, Predicate<String>> startsWithLetter = letter -> name -> name.startsWith(letter);
乍一看也许觉得上面的形式太复杂,其实不然,你只是需要时间来适应这种简练的表达方式。
那么,我们需要实现的代码就可以这样写了:
final long countFriendsStartN = friends.stream().filter(startsWithLetter.apply("N")).count();
final long countFriendsStartB = friends.stream().filter(startsWithLetter.apply("B")).count();
使用startsWithLetter.apply("N")
的结果是得到了Lambda表达式,它作为参数被传入到了filter方法中。剩下的事情,就和之前的代码一样了。
目前,已经出现了两种类型的函数式接口(Functional Interface)。它们分别是filter方法使用的Predicate和map方法使用的Function。其实从Java 8的源代码来看,它们的概念实际上是相当简单的:
@FunctionalInterface
public interface Predicate<T> {
boolean test(T t);
// others...
}
@FunctionalInterface
public interface Function<T, R> {
R apply(T t);
// others...
}
Predicate可以看做是Function的一个特例,即Function代表的就是Predicate。
比如,当我们需要打印出集合中第一个以某字母开头的元素时,最“自然”的实现如下:
public static void pickName(
final List<String> names, final String startingLetter) {
String foundName = null;
for(String name : names) {
if(name.startsWith(startingLetter)) {
foundName = name;
break;
}
}
System.out.print(String.format("A name starting with %s: ", startingLetter));
if(foundName != null) {
System.out.println(foundName);
} else {
System.out.println("No name found");
}
}
虽然是最“自然”的实现方式,但是它太太太丑陋了。从将foundName设置成null开始,这段代码充斥着一些代码的“坏味道”。正因为变量被设置成了null,为了避免臭名昭著的NullPointerException,我们必须在使用它之前进行空检查。除此之外,声明了可变变量,使用了冗长的外部遍历,没有尽量实现不可变性也是这段代码具有的问题。
然而,任务本身是很简单的。我们只是想打印集合中第一个符合某种条件的元素而已。
这次,使用Lambda表达式来实现:
public static void pickName(
final List<String> names, final String startingLetter) {
final Optional<String> foundName = names.stream()
.filter(name ->name.startsWith(startingLetter))
.findFirst();
System.out.println(String.format("A name starting with %s: %s", startingLetter, foundName.orElse("No name found")));
}
以上代码出现了几个新概念: 在调用filter后,调用了findFirst方法,这个方法返回的对象类型时Optional。关于这个Optional,可以将它理解成一个可能存在,也可能不存在的结果。这样的话,就可以避免对返回结果进行空检查了。对于结果是否真的存在,可以使用isPresent()方法进行判断,而get()方法用于尝试对结果的获取。当结果不存在时,我们也可以使用orElse()来指定一个替代结果,正如上面使用的那样。
另外,当结果存在时,通过使用ifPresent方法也可以运行某一段代码,运行的代码可以通过Lambda表达式声明:
foundName.ifPresent(name -> System.out.println("Hello " + name));
但是,对于使用Lambda表达式实现的pickName方法,它做的工作是否会比命令式的实现方式更多呢?因为可以发现,在命令式实现中,当我们发现了第一个符号条件的元素之后,for循环会被立即终止。而findFirst是否也会执行类型的操作,当发现第一个符号条件的元素后,及时中断剩下的操作呢?答案是肯定的,关于这一点会在后面的文章中会进行介绍。
和前面的种种操作不同,对于集合的归约(Collection Reduction),元素与元素不再是独立的,它们会通过某种归约操作联系在一起。
比如得到名字集合的总字符数,就是一种典型的求和归约。可以实现如下:
System.out.println("Total number of characters in all names: " +
friends.stream()
.mapToInt(name -> name.length())
.sum());
通过stream实例的mapToInt方法,我们可以很方便地将一个字符串集合转换成一个整型数集合。然后调用sum方法得到整型数集合的和值。这里有一些实现细节,比如mapToInt方法得到的是一个Stream类型的子类型IntStream的实例,sum方法就是定义在IntStream类型之上。与IntStream类似,还有LongStream和DoubleStream类型,这些类型的存在是为了提供一些类型相关的操作,让代码调用更简洁。
比如,和sum()方法类似地,还有max(),min(),average()等一系列方法用来实现常用的归约。
但是归根到底,这些方法最终使用到的是一个叫做reduce()的方法。reduce方法的工作原理,可以这样概括:在对一个集合中的元素按照顺序进行两两操作时,根据某种策略来得到一个结果,得到的结果将作为一个元素参与到下一次操作中,最终这个集合会被归约成为一个结果。这个结果也就是reduce方法的返回值。
因此,当我们需要寻找并打印一个集合中最长的名字时(长度相同时,打印第一个),可以如下实现:
final Optional<String> aLongName = friends.stream()
.reduce((name1, name2) ->
name1.length() >= name2.length() ? name1 : name2);
aLongName.ifPresent(name -> System.out.println(String.format("A longest name: %s", name)));
我们来分析一下Lambda表达式:
(name1, name2) -> name1.length() >= name2.length() ? name1 : name2)
是不是符合我们概括的关于reduce方法的工作原理。
第一次执行两两操作时,name1和name2代表的是集合中的第一个和第二个元素,当第一个元素的长度大于等于第二个元素时,将第一个元素保留下来,否则保留第二个元素。 第二次执行两两操作时,name1代表的是上一次操作中被保留下来的拥有较长长度的元素,name2代表的是第三个元素。 以此类推...最后得到的结果就是集合中第一个拥有最长长度的元素了。
实际上,reduce方法接受的Lambda表达式的行为被抽象成了BinaryOperator接口:
@FunctionalInterface
public interface BinaryOperator<T> extends BiFunction<T,T,T> {
// others...
}
@FunctionalInterface
public interface BiFunction<T, U, R> {
/**
* Applies this function to the given arguments.
*
* @param t the first function argument
* @param u the second function argument
* @return the function result
*/
R apply(T t, U u);
// others...
}
源码也反映了BinaryOperator和另一个函数式接口BiFunction之间的关系,当BiFunction接口中接受的三个参数类型一致时,也就成为了一个BinaryOperator接口。因此,前者实际上是后者的一个特例。
另外需要注意的几点:
比如,以下代码为reduce方法传入了默认值:
final String steveOrLonger =
friends.stream()
.reduce("Steve", (name1, name2) ->
name1.length() >= name2.length() ? name1 : name2);
在过去,我们使用for循环来连接一个集合中的所有元素:
for(String name : friends) {
System.out.print(name + ", ");
}
System.out.println();
上述代码的问题是,在最后一个名字后面也出现了讨人厌的逗号!为了修复这个问题:
for(int i = 0; i < friends.size() - 1; i++) {
System.out.print(friends.get(i) + ", ");
}
if(friends.size() > 0)
System.out.println(friends.get(friends.size() - 1));
嗯,结果是正确了,但是你能忍受如此丑陋的代码吗?
为了解决这个非常非常常见的问题,Java 8中终于引入了一个StringJoiner类。 可以通过调用String类型的join方法完成这个操作:
System.out.println(String.join(", ", friends));
StringJoiner其实还能够对元素的连接操作进行更多的控制。比如为每个元素添加前缀,后缀然后再进行连接。具体的使用方法可以去参考API文档。
当然,使用reduce方法也能够完成对于集合元素的连接操作,毕竟集合元素的连接也是一种归约。只不过,正如前面看到的那样,reduce方法太过于底层了。针对这个问题,Stream类型还定义了一个collect方法用来完成一些常见的归约操作:
System.out.println(friends.stream().map(String::toUpperCase).collect(Collectors.joining(", ")));
可见collect方法并不自己完成归约操作,它会将归约操作委托给一个具体的Collector,而Collectors类型则是一个工具类,其中定义了许多常见的归约操作,比如上述的joining Collector
简单的基本操作
二、流的操作:
流的操作可以归结为几种:
1、遍历操作(map):
使用map操作可以遍历集合中的每个对象,并对其进行操作,map之后,用.collect(Collectors.toList())会得到操作后的集合。
1.1、遍历转换为大写:
List<String> output = wordList.stream().
map(String::toUpperCase).
collect(Collectors.toList());
1.2、平方数:
List<Integer> nums = Arrays.asList(1, 2, 3, 4);
List<Integer> squareNums = nums.stream().
map(n -> n * n).
collect(Collectors.toList());
2、过滤操作(filter):
使用filter可以对象Stream中进行过滤,通过测试的元素将会留下来生成一个新的Stream。
2.1、得到其中不为空的String
List<String> filterLists = new ArrayList<>();
filterLists.add("");
filterLists.add("a");
filterLists.add("b");
List afterFilterLists = filterLists.stream()
.filter(s -> !s.isEmpty())
.collect(Collectors.toList());
3、循环操作(forEach):
如果只是想对流中的每个对象进行一些自定义的操作,可以使用forEach:
List<String> forEachLists = new ArrayList<>();
forEachLists.add("a");
forEachLists.add("b");
forEachLists.add("c");
forEachLists.stream().forEach(s-> System.out.println(s));
4、返回特定的结果集合(limit/skip):
limit 返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素:
List<String> forEachLists = new ArrayList<>();
forEachLists.add("a");
forEachLists.add("b");
forEachLists.add("c");
forEachLists.add("d");
forEachLists.add("e");
forEachLists.add("f");
List<String> limitLists = forEachLists.stream().skip(2).limit(3).collect(Collectors.toList());
注意skip与limit是有顺序关系的,比如使用skip(2)会跳过集合的前两个,返回的为c、d、e、f,然后调用limit(3)会返回前3个,所以最后返回的c,d,e
5、排序(sort/min/max/distinct):
sort可以对集合中的所有元素进行排序。max,min可以寻找出流中最大或者最小的元素,而distinct可以寻找出不重复的元素:
5.1、对一个集合进行排序:
List<Integer> sortLists = new ArrayList<>();
sortLists.add(1);
sortLists.add(4);
sortLists.add(6);
sortLists.add(3);
sortLists.add(2);
List<Integer> afterSortLists = sortLists.stream().sorted((In1,In2)->
In1-In2).collect(Collectors.toList());
5.2、得到其中长度最大的元素:
List<String> maxLists = new ArrayList<>();
maxLists.add("a");
maxLists.add("b");
maxLists.add("c");
maxLists.add("d");
maxLists.add("e");
maxLists.add("f");
maxLists.add("hahaha");
int maxLength = maxLists.stream().mapToInt(s->s.length()).max().getAsInt();
System.out.println("字符串长度最长的长度为"+maxLength);
5.3、对一个集合进行查重:
List<String> distinctList = new ArrayList<>();
distinctList.add("a");
distinctList.add("a");
distinctList.add("c");
distinctList.add("d");
List<String> afterDistinctList = distinctList.stream().distinct().collect(Collectors.toList());
其中的distinct()方法能找出stream中元素equal(),即相同的元素,并将相同的去除,上述返回即为a,c,d。
6、匹配(Match方法):
有的时候,我们只需要判断集合中是否全部满足条件,或者判断集合中是否有满足条件的元素,这时候就可以使用match方法:
allMatch:Stream 中全部元素符合传入的 predicate,返回 true
anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true
noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true
6.1、判断集合中没有有为‘c’的元素:
List<String> matchList = new ArrayList<>();
matchList.add("a");
matchList.add("a");
matchList.add("c");
matchList.add("d");
boolean isExits = matchList.stream().anyMatch(s -> s.equals("c"));
6.2、判断集合中是否全不为空:
List<String> matchList = new ArrayList<>();
matchList.add("a");
matchList.add("");
matchList.add("a");
matchList.add("c");
matchList.add("d");
boolean isNotEmpty = matchList.stream().noneMatch(s -> s.isEmpty());
则返回的为false
List<String> list1 = new ArrayList();
list1.add("1111");
list1.add("2222");
list1.add("3333");
List<String> list2 = new ArrayList();
list2.add("3333");
list2.add("qqqq");
list2.add("bbb33");
list2.add("qnnjnj");
list2.add("qhghgh");
// 交集
List<String> intersection = list1.parallelStream().filter(item -> list2.contains(item)).collect(toList());
System.out.println("---得到交集 intersection---");
intersection.parallelStream().forEach(System.out :: println);
// 差集 (list1 - list2)
List<String> reduce1 = list1.parallelStream().filter(item -> !list2.contains(item)).collect(toList());
System.out.println("---得到差集 reduce1 (list1 - list2)---");
reduce1.parallelStream().forEach(System.out :: println);
// 差集 (list2 - list1)
List<String> reduce2 = list2.parallelStream().filter(item -> !list1.contains(item)).collect(toList());
System.out.println("---得到差集 reduce2 (list2 - list1)---");
reduce2.parallelStream().forEach(System.out :: println);
// 并集
List<String> listAll = list1.parallelStream().collect(toList());
List<String> listAll2 = list2.parallelStream().collect(toList());
listAll.addAll(listAll2);
System.out.println("---得到并集 listAll---");
listAll.parallelStream().forEach(System.out :: println);
// 去重并集
List<String> listAllDistinct = listAll.stream().distinct().collect(toList());
System.out.println("---得到去重并集 listAllDistinct---");
listAllDistinct.parallelStream().forEach(System.out :: println);
System.out.println("---原来的List1---");
list1.parallelStream().forEach(System.out :: println);
System.out.println("---原来的List2---");
list2.parallelStream().forEach(System.out :: println);
今天使用lambda表达式处理集合时,发现对return、break以及continue的使用有点迷惑,于是自己动手测试了一下,才发现在使用foreach()处理集合时不能使用break和continue这两个方法,也就是说不能按照普通的for循环遍历集合时那样根据条件来中止遍历,而如果要实现在普通for循环中的效果时,可以使用return来达到,也就是说如果你在一个方法的lambda表达式中使用return时,这个方法是不会返回的,而只是执行下一次遍历,看如下的测试代码:
上述代码的输出结果是如下图所示:
可以看出return起到的作用和continue是相同的。
想知道这是为什么,在Stack Overflow中找到一个答案,主要是说foreach()不是一个循环,不是设计为可以用break以及continue来中止的操作。
https://blog.csdn.net/abcwywht/article/details/77991868
https://blog.csdn.net/dm_vincent/article/details/40340291
本文基本来自这两个网站 对学习拉姆达的初学者很有用处 想升级自己的可以好好学学
标签:void final 情况下 部分 函数 microsoft 意义 overflow 简单
原文地址:https://www.cnblogs.com/jiahaoJAVA/p/8964966.html