码迷,mamicode.com
首页 > Web开发 > 详细

论文笔记--PCN:Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks

时间:2018-04-29 13:35:57      阅读:347      评论:0      收藏:0      [点我收藏+]

标签:family   info   结构   直接   lse   point   VID   suspect   训练   

  1. 测试demo:https://github.com/Jack-CV/PCN
  2. 关键词:rotation-invariant face detection, rotation-in-plane, coarse-to-fine
  3. 核心概括:该篇文章为中科院计算所智能信息处理重点实验室VIPL课题组,邬书哲博士在CVPR2018上的论文。论文主要针对的是在不同平面角度下的人脸检测,主题思想可以概括为Progressive Calibration Networks(PCN), 即逐步校正不同角度的人脸。
  4. 已有方法:目前,针对平面角度的人脸检测主要有3种策略,即data augmentation, divide-and-conquer, rotation router。

  技术分享图片技术分享图片

 

 技术分享图片

4. 改进:作者为了快速地检测不同平面角下的人脸(0°~360°),通过逐级校正的路线,针对第一级检测出来的人脸,将为[-180°, 180°]的人脸翻转到[-90°, 90°]。这一步简单来说,就是把朝下的人脸翻转为朝上,这样就减少了一半的角度范围。第二级再继续以两条±45°的轴进行翻转,将人脸的角度范围限制到[-45°, 45°]。第三级,使用角度偏差回归预测精准的角度。校正流程如下:

 技术分享图片

 5. 样本划分:

Positive, IOU > 0.7

Negative, IOU < 0.3

Suspected,  IOU ∈[0.3, 0.7]

Positive 和 negative 用于人脸分类,positive 和suspected 用于人脸框的回归和角度校正。

需要说明的是,

三级网络的训练样本输入分别为24x24,24x24,48x48。

对于第一级网络,人脸范围划分为2部分,人脸朝上的角度范围是[?65°,65°], 人脸朝下的范围是[-180°,-115°]∪[115°,180°],其他角度范围不作训练数据。可以定义朝上的label为0,朝下的为1。

对于第二级网络,人脸范围划分为3部分,分别为[-90°,-45°],[-45°,45°],[45°,90°],可以定义label分别为0,1,2。

对于第三级网络,人脸范围为[-45°,45°],与前两个网络不同,训练的任务是人脸角度的回归。

 6. 训练细节:

每个batch里的样本比例,positive: negative:suspected=2:2:1

max_iters:100,000

type:SGD

lr_base:0.001

gamma:0.1

lr_policy:step

step:70,000

wd:0.0005

7. 网络结构:

 技术分享图片

 8. 算法介绍:

8.1 PCN-1

对于每一个输入的滑窗,第一级网络有3个目标:人脸与非人脸的判断(f),人脸框的回归(t),角度的分类score(g)。

 技术分享图片

第一个目标f,使用softmax-loss,y=1 if face else 0

 技术分享图片

第二个目标t,使用 l1 loss

   技术分享图片

人脸框的回归由3部分组成,w代表宽度,(a,b)代表人脸框的左上角坐标

   技术分享图片

第三个目标g,和第一个类似使用softmax-loss, y=1 if face is up else 0

   技术分享图片

最终的loss为,λ为各个loss 的weight

 技术分享图片

第一级的人脸角度划分,根据预测的θ进行划分,0°表示人脸朝上,不翻转;180°表示人脸朝下,进行翻转。

   技术分享图片

8.2 PCN-2

第二级与第一级类似,只是角度的校正范围发生了变化,转变为[-90°,-45°],[-45°,45°],[45°,90°]

 技术分享图片

8.3 PCN-3

经过第二级的校正之后,人脸的范围已经校正到竖直的一个区域。通过直接对角度进行回归,使用的loss变为l1 loss。

最终的角度可以由3级网络检测的角度进行叠加得到。

   技术分享图片

9. 实验结果:

   技术分享图片

 

   技术分享图片

 

   技术分享图片

 

技术分享图片

论文笔记--PCN:Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks

标签:family   info   结构   直接   lse   point   VID   suspect   训练   

原文地址:https://www.cnblogs.com/danpe/p/8970758.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!