标签:start auth ## import 距离 #### span art 蒙特卡罗
1 #!/usr/bin/env python 2 #-*- coding:utf-8 -*- 3 ############################ 4 #File Name: pi.py 5 #Author: frank 6 #Mail: frank0903@aliyun.com 7 #Created Time:2018-04-29 15:46:50 8 ############################ 9 10 import random 11 import time 12 13 #spigot algorithms 计算圆周率 14 #圆周率近似公式计算 15 #pi = 0.0 16 #N = 1000 17 # 18 #for k in range(N): 19 # pi += 1/pow(16, k) * (4/(8*k+1) - 2/(8*k+4) - 1/(8*k+5) - 1/(8*k+6)) 20 # 21 #print(pi); 22 23 #蒙特卡罗方法计算圆周率 24 #思想:用概率的方法得到圆的面积S,然后用圆的面积除以半径的平方得到PI的值,即PI=S/(R*R) 25 #设,正方形的长为a,内切圆的半径为r,将正方形分为4等分,坐标原点在圆心; 26 #以第一象限的4分之一正方形/内切圆为对象,设投掷的总次数为N,投掷在圆内的次数为m(m<=N) 27 #PI = 4 * (m/N) 28 29 #程序中设定r=1 30 #投掷点在圆内的条件是: 点(x,y)到圆心的距离小于等于r,则认为投掷在圆内;即,(x*x+y*y)的平方根 <= 1 31 32 pi = 0.0 33 #1,000,000,000 十亿 599.390809s 34 #1,000,000 百万 0.6s 35 #10,000,000 千万 6.05s 36 #100,000,000 一亿 59.98s 37 N = 1000000000 38 r = 1.0 39 m = 0 40 41 42 time_start = time.perf_counter() 43 for i in range(N): 44 x = random.random() 45 y = random.random() 46 if (pow((x**2 + y**2), 0.5) <= r): 47 | m += 1; 48 49 pi = 4*m/N 50 print("圆周率是:{:f},m={:d}".format(pi,m)) 51 print("计算耗时:{:f}s".format(time.perf_counter()-time_start))
标签:start auth ## import 距离 #### span art 蒙特卡罗
原文地址:https://www.cnblogs.com/black-mamba/p/8971953.html