标签:direct assert 5.5 oge oss play measure under for
https://www.coursera.org/learn/convolutional-neural-networks/home/welcome
There are still something confuse me!
working how to paste the jupyter here....................................................
Welcome to Course 4‘s first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation.
Notation:
We assume that you are already familiar with numpy
and/or have completed the previous courses of the specialization. Let‘s get started!
Let‘s first import all the packages that you will need during this assignment.
You will be implementing the building blocks of a convolutional neural network! Each function you will implement will have detailed instructions that will walk you through the steps needed:
This notebook will ask you to implement these functions from scratch in numpy
. In the next notebook, you will use the TensorFlow equivalents of these functions to build the following model:
Note that for every forward function, there is its corresponding backward equivalent. Hence, at every step of your forward module you will store some parameters in a cache. These parameters are used to compute gradients during backpropagation.
Although programming frameworks make convolutions easy to use, they remain one of the hardest concepts to understand in Deep Learning. A convolution layer transforms an input volume into an output volume of different size, as shown below.
In this part, you will build every step of the convolution layer. You will first implement two helper functions: one for zero padding and the other for computing the convolution function itself.
Zero-padding adds zeros around the border of an image:
The main benefits of padding are the following:
It allows you to use a CONV layer without necessarily shrinking the height and width of the volumes. This is important for building deeper networks, since otherwise the height/width would shrink as you go to deeper layers. An important special case is the "same" convolution, in which the height/width is exactly preserved after one layer.
It helps us keep more of the information at the border of an image. Without padding, very few values at the next layer would be affected by pixels as the edges of an image.
Exercise: Implement the following function, which pads all the images of a batch of examples X with zeros. Use np.pad. Note if you want to pad the array "a" of shape (5,5,5,5,5) with pad = 1
for the 2nd dimension, pad = 3
for the 4th dimension and pad = 0
for the rest, you would do:
a = np.pad(a, ((0,0), (1,1), (0,0), (3,3), (0,0)), ‘constant‘, constant_values = (..,..))
Expected Output:
x.shape: | (4, 3, 3, 2) |
x_pad.shape: | (4, 7, 7, 2) |
x[1,1]: | [[ 0.90085595 -0.68372786] [-0.12289023 -0.93576943] [-0.26788808 0.53035547]] |
x_pad[1,1]: | [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]] |
In this part, implement a single step of convolution, in which you apply the filter to a single position of the input. This will be used to build a convolutional unit, which:
In a computer vision application, each value in the matrix on the left corresponds to a single pixel value, and we convolve a 3x3 filter with the image by multiplying its values element-wise with the original matrix, then summing them up and adding a bias. In this first step of the exercise, you will implement a single step of convolution, corresponding to applying a filter to just one of the positions to get a single real-valued output.
Later in this notebook, you‘ll apply this function to multiple positions of the input to implement the full convolutional operation.
Exercise: Implement conv_single_step(). Hint.
Expected Output:
Z | -6.99908945068 |
In the forward pass, you will take many filters and convolve them on the input. Each ‘convolution‘ gives you a 2D matrix output. You will then stack these outputs to get a 3D volume:
Exercise: Implement the function below to convolve the filters W on an input activation A_prev. This function takes as input A_prev, the activations output by the previous layer (for a batch of m inputs), F filters/weights denoted by W, and a bias vector denoted by b, where each filter has its own (single) bias. Finally you also have access to the hyperparameters dictionary which contains the stride and the padding.
Hint:
a_slice_prev = a_prev[0:2,0:2,:]
This will be useful when you will define a_slice_prev
below, using the start/end
indexes you will define.vert_start
, vert_end
, horiz_start
and horiz_end
. This figure may be helpful for you to find how each of the corner can be defined using h, w, f and s in the code below.Reminder: The formulas relating the output shape of the convolution to the input shape is:
For this exercise, we won‘t worry about vectorization, and will just implement everything with for-loops.
Expected Output:
Z‘s mean | 0.0489952035289 |
Z[3,2,1] | [-0.61490741 -6.7439236 -2.55153897 1.75698377 3.56208902 0.53036437 5.18531798 8.75898442] |
cache_conv[0][1][2][3] | [-0.20075807 0.18656139 0.41005165] |
Finally, CONV layer should also contain an activation, in which case we would add the following line of code:
# Convolve the window to get back one output neuron
Z[i, h, w, c] = ...
# Apply activation
A[i, h, w, c] = activation(Z[i, h, w, c])
You don‘t need to do it here.
The pooling (POOL) layer reduces the height and width of the input. It helps reduce computation, as well as helps make feature detectors more invariant to its position in the input. The two types of pooling layers are:
Max-pooling layer: slides an (f,f) window over the input and stores the max value of the window in the output.
Average-pooling layer: slides an (f,f) window over the input and stores the average value of the window in the output.
These pooling layers have no parameters for backpropagation to train. However, they have hyperparameters such as the window size f. This specifies the height and width of the fxf window you would compute a max or average over.
Now, you are going to implement MAX-POOL and AVG-POOL, in the same function.
Exercise: Implement the forward pass of the pooling layer. Follow the hints in the comments below.
Reminder: As there‘s no padding, the formulas binding the output shape of the pooling to the input shape is:
Expected Output:
A = | [[[[ 1.74481176 0.86540763 1.13376944]]] [[[ 1.13162939 1.51981682 2.18557541]]]] |
A = | [[[[ 0.02105773 -0.20328806 -0.40389855]]] [[[-0.22154621 0.51716526 0.48155844]]]] |
Congratulations! You have now implemented the forward passes of all the layers of a convolutional network.
The remainer of this notebook is optional, and will not be graded.
In modern deep learning frameworks, you only have to implement the forward pass, and the framework takes care of the backward pass, so most deep learning engineers don‘t need to bother with the details of the backward pass. The backward pass for convolutional networks is complicated. If you wish however, you can work through this optional portion of the notebook to get a sense of what backprop in a convolutional network looks like.
When in an earlier course you implemented a simple (fully connected) neural network, you used backpropagation to compute the derivatives with respect to the cost to update the parameters. Similarly, in convolutional neural networks you can to calculate the derivatives with respect to the cost in order to update the parameters. The backprop equations are not trivial and we did not derive them in lecture, but we briefly presented them below.
Let‘s start by implementing the backward pass for a CONV layer.
This is the formula for computing dA with respect to the cost for a certain filter Wc and a given training example:
Where Wc is a filter and dZhw is a scalar corresponding to the gradient of the cost with respect to the output of the conv layer Z at the hth row and wth column (corresponding to the dot product taken at the ith stride left and jth stride down). Note that at each time, we multiply the the same filter Wc by a different dZ when updating dA. We do so mainly because when computing the forward propagation, each filter is dotted and summed by a different a_slice. Therefore when computing the backprop for dA, we are just adding the gradients of all the a_slices.
In code, inside the appropriate for-loops, this formula translates into:
da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]
This is the formula for computing dWc (dWc is the derivative of one filter) with respect to the loss:
Where aslice corresponds to the slice which was used to generate the acitivation Zij. Hence, this ends up giving us the gradient for W with respect to that slice. Since it is the same W, we will just add up all such gradients to get dW.
In code, inside the appropriate for-loops, this formula translates into:
dW[:,:,:,c] += a_slice * dZ[i, h, w, c]
This is the formula for computing db with respect to the cost for a certain filter Wc:
As you have previously seen in basic neural networks, db is computed by summing dZ. In this case, you are just summing over all the gradients of the conv output (Z) with respect to the cost.
In code, inside the appropriate for-loops, this formula translates into:
db[:,:,:,c] += dZ[i, h, w, c]
Exercise: Implement the conv_backward
function below. You should sum over all the training examples, filters, heights, and widths. You should then compute the derivatives using formulas 1, 2 and 3 above.
Expected Output:
dA_mean | 1.45243777754 |
dW_mean | 1.72699145831 |
db_mean | 7.83923256462 |
Next, let‘s implement the backward pass for the pooling layer, starting with the MAX-POOL layer. Even though a pooling layer has no parameters for backprop to update, you still need to backpropagation the gradient through the pooling layer in order to compute gradients for layers that came before the pooling layer.
Before jumping into the backpropagation of the pooling layer, you are going to build a helper function called create_mask_from_window()
which does the following:
As you can see, this function creates a "mask" matrix which keeps track of where the maximum of the matrix is. True (1) indicates the position of the maximum in X, the other entries are False (0). You‘ll see later that the backward pass for average pooling will be similar to this but using a different mask.
Exercise: Implement create_mask_from_window()
. This function will be helpful for pooling backward. Hints:
A = (X == x)
will return a matrix A of the same size as X such that:
A[i,j] = True if X[i,j] = x
A[i,j] = False if X[i,j] != x
Expected Output:
x = | [[ 1.62434536 -0.61175641 -0.52817175] [-1.07296862 0.86540763 -2.3015387 ]] |
mask = | [[ True False False] [False False False]] |
Why do we keep track of the position of the max? It‘s because this is the input value that ultimately influenced the output, and therefore the cost. Backprop is computing gradients with respect to the cost, so anything that influences the ultimate cost should have a non-zero gradient. So, backprop will "propagate" the gradient back to this particular input value that had influenced the cost.
In max pooling, for each input window, all the "influence" on the output came from a single input value--the max. In average pooling, every element of the input window has equal influence on the output. So to implement backprop, you will now implement a helper function that reflects this.
For example if we did average pooling in the forward pass using a 2x2 filter, then the mask you‘ll use for the backward pass will look like:
This implies that each position in the dZ matrix contributes equally to output because in the forward pass, we took an average.
Exercise: Implement the function below to equally distribute a value dz through a matrix of dimension shape. Hint
Expected Output:
distributed_value = | [[ 0.5 0.5] [ 0.5 0.5]] |
You now have everything you need to compute backward propagation on a pooling layer.
Exercise: Implement the pool_backward
function in both modes ("max"
and "average"
). You will once again use 4 for-loops (iterating over training examples, height, width, and channels). You should use an if/elif
statement to see if the mode is equal to ‘max‘
or ‘average‘
. If it is equal to ‘average‘ you should use the distribute_value()
function you implemented above to create a matrix of the same shape as a_slice
. Otherwise, the mode is equal to ‘max
‘, and you will create a mask with create_mask_from_window()
and multiply it by the corresponding value of dZ.
Expected Output:
mode = max:
mean of dA = | 0.145713902729 |
dA_prev[1,1] = | [[ 0. 0. ] [ 5.05844394 -1.68282702] [ 0. 0. ]] |
mode = average
mean of dA = | 0.145713902729 |
dA_prev[1,1] = | [[ 0.08485462 0.2787552 ] [ 1.26461098 -0.25749373] [ 1.17975636 -0.53624893]] |
Congratulation on completing this assignment. You now understand how convolutional neural networks work. You have implemented all the building blocks of a neural network. In the next assignment you will implement a ConvNet using TensorFlow.
Convolutional Neural Networks from deep learning (assignment 1 from week 1)
标签:direct assert 5.5 oge oss play measure under for
原文地址:https://www.cnblogs.com/stiles/p/deeplearning1.html