码迷,mamicode.com
首页 > 编程语言 > 详细

自己实现KNN算法

时间:2018-05-08 14:18:55      阅读:165      评论:0      收藏:0      [点我收藏+]

标签:count   数据集   doc   mos   str   mon   sort   res   数据   

import numpy as np
from math import sqrt
from collections import Counter

class KNNClassifier(object):
    """docstring for KNNClassifier"""
    def __init__(self, k):
        assert k>=1,"k must be valid"
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self,X_train,y_train):
        ‘‘‘根据训练数据集X_train和y_train训练KNN分类器‘‘‘
        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self,X_predict):
        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self,x):
        distances = [sqrt(np.sum((x_train-x)**2) for x_train in self._X_train)]

        nearest = np.argsort(distances)

        topK_y=[self._y_train[i] for i in nearest[:self.k]]
        votes = Counter(topK_y)

        return votes.most_common(1)[0][0]

 

自己实现KNN算法

标签:count   数据集   doc   mos   str   mon   sort   res   数据   

原文地址:https://www.cnblogs.com/Erick-L/p/9007633.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!