码迷,mamicode.com
首页 > 编程语言 > 详细

8-1 如何使用多线程

时间:2018-05-08 17:37:07      阅读:220      评论:0      收藏:0      [点我收藏+]

标签:提高效率   py3   imp   mit   obj   pytho   ADG   make   适合   

技术分享图片

技术分享图片
>>> help(Thread)
Help on class Thread in module threading:

class Thread(_Verbose)
 |  A class that represents a thread of control.
 |  
 |  This class can be safely subclassed in a limited fashion.
 |  
 |  Method resolution order:
 |      Thread
 |      _Verbose
 |      __builtin__.object
 |  
 |  Methods defined here:
 |  
 |  __init__(self, group=None, target=None, name=None, args=(), kwargs=None, verbose=None)
 |      This constructor should always be called with keyword arguments. Arguments are:
 |      
 |      *group* should be None; reserved for future extension when a ThreadGroup
 |      class is implemented.
 |      
 |      *target* is the callable object to be invoked by the run()
 |      method. Defaults to None, meaning nothing is called.
 |      
 |      *name* is the thread name. By default, a unique name is constructed of
 |      the form "Thread-N" where N is a small decimal number.
 |      
 |      *args* is the argument tuple for the target invocation. Defaults to ().
 |      
 |      *kwargs* is a dictionary of keyword arguments for the target
 |      invocation. Defaults to {}.
 |      
 |      If a subclass overrides the constructor, it must make sure to invoke
 |      the base class constructor (Thread.__init__()) before doing anything
 |      else to the thread.
help(Thread)

方法一:直接创建线程时执行

from threading import Thread
from time import sleep

def handle(sid):
print (Download...(%d) %sid)            #模拟下载过程 
sleep(2)
    print (Convert to...(%d) %sid)        #模拟转换过程

t = Thread(target= handle, args=(1,)) #创建线程,参数target线程运行的函数,args参数是一个元组,是target指向函数的参数
t.start()                                    #启动线程

print(main thread)

输出结果:

Download...(1)main thread          

 

Convert to...(1)

打印‘Download’和‘Convet’中间打印的’main thread’说明线程启动后,主线程先运行完了,此时子线程仍然在运行,

 

 

正常都要在启动的子线程都运行完成后,主线程再执行完,这时要在start()之后增加 join()等待子线程执行完,主线程再继续执行

t.start()

 

t.join()   #是一个阻塞函数,子线程不运行完,join就不返回。

 

print(‘main thread‘)

输出结果:

Download...(1)

Convert to...(1)

main thread

方法二:创建一个线程类来封装数据

# -*- coding: cp936 -*-
from threading import Thread
from time import sleep

def handle(sid):
    print (Download...(%d) %sid)
    sleep(2)
    print (Convert to...(%d) %sid)

"""
t = Thread(target= handle, args=(1,))
t.start()

t.join()
"""

class MyThread(Thread):     #自定义线程类
    def __init__(self,sid):
        #Thread.__init__(self)
        super(MyThread,self).__init__()  #必须调用 父类的构造器  这是py2的语法,py3是super().__init__()
        self.sid = sid     #使用类,能够更好的封装数据
        
    def run(self):          #新建程序的入口点,和target类似
        handle(self.sid)    #更常见的做法是将handle也做为这个类的方法


t = MyThread(1)
t.start()
t.join()
print(main thread)

结果输出:

Download...(1)

Convert to...(1)

main thread

三、完成10个线程下载和转换

# -*- coding: cp936 -*-
from threading import Thread
from time import sleep

def handle(sid):
    print (Download...(%d) %sid)
    sleep(2)
    print (Convert to...(%d) %sid)

"""
t = Thread(target= handle, args=(1,))
t.start()

t.join()
"""

class MyThread(Thread):     #自定义线程类
    def __init__(self,sid):
        #Thread.__init__(self)
        super(MyThread,self).__init__()  #必须调用 父类的构造器
        self.sid = sid     #使用类,能够更好的封装数据
        
    def run(self):          #新建程序的入口点,和target类似
        handle(self.sid)    #更常见的做法是将handle也做为这个类的方法

threads = []               #创建一个空列表,将创建的线程添加到这个线程列表中去
for i in xrange(1,11):
    t = MyThread(i)
    threads.append(t)
    t.start()

for x in threads:           #迭代线程列表,等待所有的子线程
    x.join()
    
print(main thread)

输出结果:

Download...(1)Download...(4)Download...(2)Download...(3)Download...(5)Download...(6)Download...(7)Download...(8)Download...(9)Download...(10)

 

Convert to...(4)Convert to...(1)Convert to...(2)Convert to...(5)Convert to...(3)Convert to...(6)Convert to...(7)

 

 Convert to...(9)

Convert to...(8)Convert to...(10)

 

main thread

IO操作和CPU密集型操作,IO操作特点下载传输速度慢,此时多几个CPU提高效率不明显。CPU密集型操作,执行速度快,CPU多了执行效率高。但python多线程 不适合执行CPU密集型操作,因为python中有全局解释器锁GIL,导致当前只有一个线程能被python解释器执行。Python多线程不是真正意义上的并发。与C语言的多线程不同。这种类似于供销模式类型,更适合用协程来操作

8-1 如何使用多线程

标签:提高效率   py3   imp   mit   obj   pytho   ADG   make   适合   

原文地址:https://www.cnblogs.com/smulngy/p/9009268.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!