码迷,mamicode.com
首页 > Web开发 > 详细

可变卷积Deforable ConvNet 迁移训练自己的数据集 MXNet框架 GPU版

时间:2018-05-10 18:41:03      阅读:763      评论:0      收藏:0      [点我收藏+]

标签:ade   strong   流程详解   文件信息   注意   eset   res   download   百度   

【引言】 最近在用可变卷积的rfcn 模型迁移训练自己的数据集, MSRA官方使用的MXNet框架

环境搭建及配置:http://www.cnblogs.com/andre-ma/p/8867031.html

 

一 参数修改:

1.1  ~/Deformable-ConvNets/experiments/rfcn/cfgs/resnet_v1_101_voc0712_rfcn_dcn_end2end_ohem.yaml  文件中修改两个参数 (yaml文件包含对应训练脚本的一切配置信息和超参数

一个使用GPU个数  : 

gpus: ‘0,1‘   表示用两块GPU训练

另一个是样本类别数

NUM_CLASSES: 5    样本类别数需 + 1   因为有背景

还有要修改使用的数据集

image_set: 2007_trainval    单单使用VOC2007  若是 image_set: 2007_trainval+2012_trainval  则用VOC2007 和 VOC2012两个数据集

 

1.2 修改  ~/Deformable-ConvNets/lib/dataset/pascal_voc.py 文件中的样本标签类别

self.classes = [‘__background__‘, ‘tiger_beetle‘, ‘scarab‘, ‘stinkbug‘,‘moth‘]  和上面对应,加上背景一共为5类

 

二 数据集准备及制作

2.1 获取数据,这个自己准备,可以用爬虫在互联网上爬取,或用其他方式收集,推荐几个图片爬虫 : 百度图片爬虫   必应图片爬虫

2.2 标注图片信息,在做目标检测时需要coco数据集或VOC数据集,可用labelImg等图像标注工具标注图片:labelImg链接:https://github.com/tzutalin/labelImg

【这里简单介绍下VOC数据格式】  参考:https://blog.csdn.net/julialove102123/article/details/78330752

VOC数据集的组织架构如下:

  • VOC2007的目录结构为:

    ├── Annotations  xml文件
    ├── ImageSets   txt文件
    └── JPEGImages 图片

  • ImageSets的目录结构为:

    ├── Layout
    ├── Main
    └── Segmentation

LabelImg可在多个平台下配置,但要注意各软件依赖的版本号:通常是python=3.5  pyqt=4  依赖lxml

Ubuntu16.04  配置labelImg教程:https://blog.csdn.net/lightningqw/article/details/78944941   (ubuntu系统下确实是不能用中文,结果发现在windows下以上的方法可以带中文)

2.3 排查并删除所有错误jpg格式

通过后缀名来判断jpg格式文件虽然简单,但是有时候会出错,尤其是从互联网上获取的图片,其质量更是难以保证。

python的PIL工具提供对jpg格式文件的判断方法:https://blog.csdn.net/qiyuanxiong/article/details/77943578

(ps: 删除不合格jpg时,记得要对应删除xml文件信息哦~)

2.3 生成4个txt

train.txt  val.txt  trainval.txt  test.txt     四txt:生成及介绍:https://blog.csdn.net/Bankeey/article/details/76595884

train:val:test  =  1: 1: 2    trainval是train和val的并集,即  train:val:trainval = 1:1:2  【训练、验证、测试流程详解】

如何制作自己的VOC2007数据集:https://www.jianshu.com/p/b498a8a5a4f4

 

三 迁移训练

熟悉可变卷积Deformable-ConvNets 的老铁们,可知在experiments文件夹下是不同模型的project

如本实验使用rfcn模型迁移训练,cd  Deformable-ConvNets目录,执行下面代码,开始训练!

python experiments/rfcn/rfcn_end2end_train_test.py --cfg experiments/rfcn/cfgs/resnet_v1_101_voc0712_rfcn_dcn_end2end_ohem.yaml

 

 

【总结】

1.用自己的数据集迁移训练可变rfcn模型,主要核心问题是数据集,数据集要有数量质量

2.使用可变rfcn迁移训练,关键要熟悉流程,以及需要修改的文件和参数

3.遇到问题时不要慌,有时候一着急反而容易把问题复杂化,或是本来快要找到解决问题的正确方法,却因另一个小问题掩盖了真正要解决的问题

anyway:  安息为王~  :)

 

 

本文参考:https://blog.csdn.net/yiweibian/article/details/67634584

 

 

 

可变卷积Deforable ConvNet 迁移训练自己的数据集 MXNet框架 GPU版

标签:ade   strong   流程详解   文件信息   注意   eset   res   download   百度   

原文地址:https://www.cnblogs.com/andre-ma/p/9012717.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!