Sam和他的妹妹Sara有一个包含n × m个方格的
表格。她们想要将其的每个方格都染成红色或蓝色。
出于个人喜好,他们想要表格中每个2 × 2的方形区
域都包含奇数个(1 个或 3 个)红色方格。例如,右
图是一个合法的表格染色方案(在打印稿中,深色代
表蓝色,浅色代表红色) 。
可是昨天晚上,有人已经给表格中的一些方格染上了颜色!现在Sam和Sara
非常生气。不过,他们想要知道是否可能给剩下的方格染上颜色,使得整个表格
仍然满足她们的要求。如果可能的话,满足他们要求的染色方案数有多少呢?
输入的第一行包含三个整数n, m和k,分别代表表格的行数、列数和已被染
色的方格数目。
之后的k行描述已被染色的方格。其中第 i行包含三个整数xi, yi和ci,分别
代表第 i 个已被染色的方格的行编号、列编号和颜色。ci为 1 表示方格被染成红
色,ci为 0表示方格被染成蓝色。
输出一个整数,表示可能的染色方案数目 W 模 10^9得到的值。(也就是说,如果 W大于等于10^9,则输出 W被10^9除所得的余数)。
对于所有的测试数据,2 ≤ n, m ≤ 106
,0 ≤ k ≤ 10^6
,1 ≤ xi ≤ n,1 ≤ yi ≤ m。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 2000050
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<‘0‘||s>‘9‘) s=nc();
while(s>=‘0‘&&s<=‘9‘) x=(x<<3)+(x<<1)+s-‘0‘,s=nc();
return x;
}
int fa[N],n,m,a[N],k,xx[N],yy[N],cc[N];
ll mod=1000000000;
ll qp(ll x,ll y) {ll re=1; for(;y;y>>=1ll,x=x*x%mod) if(y&1ll) re=re*x%mod; return re;}
int find(int x) {
if(fa[x]==x) return x;
int tmp=find(fa[x]);
a[x]^=a[fa[x]];
return fa[x]=tmp;
}
int main() {
n=rd(); m=rd(); k=rd();
register int i;
for(i=1;i<=k;i++) {
xx[i]=rd(); yy[i]=rd(); cc[i]=rd();
}
int col1,flg[2];
flg[0]=flg[1]=0;
ll ans=0;
for(col1=0;col1<2;col1++) {
int cnt=0;
for(i=1;i<=n+m-1;i++) fa[i]=i,a[i]=0;
for(i=1;i<=k;i++) {
int p=col1^cc[i]^(xx[i]%2==0&&yy[i]%2==0);
int x=xx[i],y=yy[i]+n-1;
int dx=find(x),dy=find(y);
if(dx!=dy) {
fa[dx]=dy;
a[dx]=a[y]^a[x]^p;
}else {
if((a[x]^a[y])!=p) {
flg[col1]=1; break;
}
}
}
for(i=1;i<=n+m-1;i++) {
if(fa[i]==i) {
cnt++;
}
}
cnt--;
if(!flg[col1]) {
ans=(ans+qp(2,cnt))%mod;
}
}
printf("%lld\n",ans);
}