标签:gauss 背景颜色 wap edit 单位 nat 不同的 gaussian image
Python 中有很多不错的数据可视化库,但是极少能渲染 GIF 图或视频动画效果。本文就分享一下如何用 MoviePy 作为其他可视化库的通用插件,制作动画可视化效果,毕竟这年头,没图不行,有动图更好。
MoviePy 能让我们用函数 make_frame(t) 自定义动画,函数会返回和时间 t 的视频帧(以秒为单位):
from moviepy.editor import VideoClip
def make_frame(t):
""" returns an image of the frame at time t """
# ... 用任意库创建帧
return frame_for_time_t # (Height x Width x 3) Numpy array
animation = VideoClip(make_frame, duration=3) # 3-second clip
# 支持导出为多种格式
animation.write_videofile("my_animation.mp4", fps=24) # 导出为视频
animation.write_gif("my_animation.gif", fps=24) # 导出为GIF
本文会涵盖 MayaVi、vispy、matplotlib、NumPy 和 Scikit-image 这些库。
基于 Mayavi 制作动画
Mayavi 是一个 Python 模块,可以制作交互式 3D 数据可视化。在第一个例子中,我们会将一个高度随着时间 t 不断变化的表面制作成动画:
import numpy as np
import mayavi.mlab as mlab
import moviepy.editor as mpy
duration= 2 # duration of the animation in seconds (it will loop)
# 用Mayavi制作一个图形
fig_myv = mlab.figure(size=(220,220), bgcolor=(1,1,1))
X, Y = np.linspace(-2,2,200), np.linspace(-2,2,200)
XX, YY = np.meshgrid(X,Y)
ZZ = lambda d: np.sinc(XX**2+YY**2)+np.sin(XX+d)
# 用MoviePy将图形转换为动画,编写动画GIF
def make_frame(t):
mlab.clf() # 清掉图形(重设颜色)
mlab.mesh(YY,XX,ZZ(2*np.pi*t/duration), figure=fig_myv)
return mlab.screenshot(antialiased=True)
animation = mpy.VideoClip(make_frame, duration=duration)
animation.write_gif("sinc.gif", fps=20)
另外一个例子是,制作一个坐标和观看角度都随着时间不断变化的线框网动画:
import numpy as np
import mayavi.mlab as mlab
import moviepy.editor as mpy
duration = 2 # duration of the animation in seconds (it will loop)
# 用Mayavi制作一个图形
fig = mlab.figure(size=(500, 500), bgcolor=(1,1,1))
u = np.linspace(0,2*np.pi,100)
xx,yy,zz = np.cos(u), np.sin(3*u), np.sin(u) # 点
l = mlab.plot3d(xx,yy,zz, representation="wireframe", tube_sides=5,
line_width=.5, tube_radius=0.2, figure=fig)
# 用MoviePy将图形转换为动画,编写动画GIF
def make_frame(t):
""" Generates and returns the frame for time t. """
y = np.sin(3*u)*(0.2+0.5*np.cos(2*np.pi*t/duration))
l.mlab_source.set(y = y) # change y-coordinates of the mesh
mlab.view(azimuth= 360*t/duration, distance=9) # 相机视角
return mlab.screenshot(antialiased=True) # 返回RGB图形
animation = mpy.VideoClip(make_frame, duration=duration).resize(0.5)
# 视频生成花费10秒, GIF 生成花费25秒
animation.write_videofile("wireframe.mp4", fps=20)
animation.write_gif("wireframe.gif", fps=20)
基于 Vispy 制作动画
Vispy 是另一款基于 OpenGL 的交互式 3D 数据可视化库。我们可以先用 Vispy 做出图形和网格,然后用 MoviePy 将其制作成动画:
from moviepy.editor import VideoClip
import numpy as np
from vispy import app, scene
from vispy.gloo.util import _screenshot
canvas = scene.SceneCanvas(keys=‘interactive‘)
view = canvas.central_widget.add_view()
view.set_camera(‘turntable‘, mode=‘perspective‘, up=‘z‘, distance=2,
azimuth=30., elevation=65.)
xx, yy = np.arange(-1,1,.02),np.arange(-1,1,.02)
X,Y = np.meshgrid(xx,yy)
R = np.sqrt(X**2+Y**2)
Z = lambda t : 0.1*np.sin(10*R-2*np.pi*t)
surface = scene.visuals.SurfacePlot(x= xx-0.1, y=yy+0.2, z= Z(0),
shading=‘smooth‘, color=(0.5, 0.5, 1, 1))
view.add(surface)
canvas.show()
# 用MoviePy转换为动画
def make_frame(t):
surface.set_data(z = Z(t)) # 更新曲面
canvas.on_draw(None) # 更新Vispy的画布上的 图形
return _screenshot((0,0,canvas.size[0],canvas.size[1]))[:,:,:3]
animation = VideoClip(make_frame, duration=1).resize(width=350)
animation.write_gif(‘sinc_vispy.gif‘, fps=20, opt=‘OptimizePlus‘)
下面是一些用 Vispy 制作的更复杂点的酷炫动画,它们是将 C 语言代码片段嵌入 Python 代码中,并微调 3D 着色器后制作而成:
制作该动画的代码地址: https:// gist.github.com/Zulko/5 4e5468759396c5cbbd2
制作该动画的代码地址: https:// gist.github.com/Zulko/4 dcaf3e38fdc118f22a3
基于 matplotlib 制作动画
虽然 2D/3D 绘图库 matplotlib 内置了动画模块,但是用 MoviePy 制作更轻更高质量的视频动画,而且运行速度更快。下面是用 MoviePy 基于 matplotlib 制作动画的方法:
import matplotlib.pyplot as plt
import numpy as np
from moviepy.video.io.bindings import mplfig_to_npimage
import moviepy.editor as mpy
# 用matplotlib绘制一个图形
duration = 2
fig_mpl, ax = plt.subplots(1,figsize=(5,3), facecolor=‘white‘)
xx = np.linspace(-2,2,200) # x向量
zz = lambda d: np.sinc(xx**2)+np.sin(xx+d) # (变化的)Z向量
ax.set_title("Elevation in y=0")
ax.set_ylim(-1.5,2.5)
line, = ax.plot(xx, zz(0), lw=3)
# 用MoviePy制作动(为每个t更新曲面)。制作一个GIF
def make_frame_mpl(t):
line.set_ydata( zz(2*np.pi*t/duration)) # 更新曲面
return mplfig_to_npimage(fig_mpl) # 图形的RGB图像
animation =mpy.VideoClip(make_frame_mpl, duration=duration)
animation.write_gif("sinc_mpl.gif", fps=20)
Matplotlib 有很多漂亮的主题,和 Pandas、Scikit-Learn 等数字模块的兼容性也很好。我们来看一个 SVM 分类器,更好的理解随着训练点的数量增加时地图的变化动态:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm # sklearn = scikit-learn
from sklearn.datasets import make_moons
from moviepy.editor import VideoClip
from moviepy.video.io.bindings import mplfig_to_npimage
X, Y = make_moons(50, noise=0.1, random_state=2) # 半随机数据
fig, ax = plt.subplots(1, figsize=(4, 4), facecolor=(1,1,1))
fig.subplots_adjust(left=0, right=1, bottom=0)
xx, yy = np.meshgrid(np.linspace(-2,3,500), np.linspace(-1,2,500))
def make_frame(t):
ax.clear()
ax.axis(‘off‘)
ax.set_title("SVC classification", fontsize=16)
classifier = svm.SVC(gamma=2, C=1)
# 不断变化的权重让数据点一个接一个的出现
weights = np.minimum(1, np.maximum(0, t**2+10-np.arange(50)))
classifier.fit(X, Y, sample_weight=weights)
Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=plt.cm.bone, alpha=0.8,
vmin=-2.5, vmax=2.5, levels=np.linspace(-2,2,20))
ax.scatter(X[:,0], X[:,1], c=Y, s=50*weights, cmap=plt.cm.bone)
return mplfig_to_npimage(fig)
animation = VideoClip(make_frame, duration = 7)
animation.write_gif("svm.gif", fps=15)
零基础入门视频。项目实战视频!大牛答疑群:125240963
简单来说,通过背景颜色我们就可以得知分类器辨识黑色点和白色点属于哪里。刚开始并不明显,但随着越来越多的数据点出现,这些点的分布逐渐呈月牙形区域。
基于 Numpy 的动画
如果是用 Numpy 数组(Numpy 是 Python 中的一个数字库),你不需要任何外部绘图库,你可以直接将数组输入 MoviePy 里。
将 Numpy 和 MoviePy 结合,可以做出很炫酷的动画效果。比如我们可以模拟僵尸病毒在法国蔓延的动态图(模拟!模拟!),以网格形式(Numpy 数组)模拟出法国地图,在上面执行所有模拟病毒感染和扩散效果的计算。每隔一段时间,一些 Numpy 操作会将网格转换为有效的 RGB 图像,并将其发送至 MoviePy:
import urllib
import numpy as np
from scipy.ndimage.filters import convolve
import moviepy.editor as mpy
#### 从网络上检索地图
filename = ("http://upload.wikimedia.org/wikipedia/commons/a/aa/"
"France_-_2011_population_density_-_200_m_%C3%"
"97_200_m_square_grid_-_Dark.png")
urllib.urlretrieve(filename, "france_density.png")
#### 参数和约束条件
infection_rate = 0.3
incubation_rate = 0.1
dispersion_rates = [0, 0.07, 0.03] # for S, I, R
# 该内核会模拟人类/僵尸如何用一个位置扩散至邻近位置
dispersion_kernel = np.array([[0.5, 1 , 0.5],
[1 , -6, 1],
[0.5, 1, 0.5]])
france = mpy.ImageClip("france_density.png").resize(width=400)
SIR = np.zeros( (3,france.h, france.w), dtype=float)
SIR[0] = france.get_frame(0).mean(axis=2)/255
start = int(0.6*france.h), int(0.737*france.w)
SIR[1,start[0], start[1]] = 0.8 # infection in Grenoble at t=0
dt = 1.0 # 一次更新=实时1个小时
hours_per_second= 7*24 # one second in the video = one week in the model
world = {‘SIR‘:SIR, ‘t‘:0}
##### 建模
def infection(SIR, infection_rate, incubation_rate):
""" Computes the evolution of #Sane, #Infected, #Rampaging"""
S,I,R = SIR
newly_infected = infection_rate*R*S
newly_rampaging = incubation_rate*I
dS = - newly_infected
dI = newly_infected - newly_rampaging
dR = newly_rampaging
return np.array([dS, dI, dR])
def dispersion(SIR, dispersion_kernel, dispersion_rates):
""" Computes the dispersion (spread) of people """
return np.array( [convolve(e, dispersion_kernel, cval=0)*r
for (e,r) in zip(SIR, dispersion_rates)])
def update(world):
""" spread the epidemic for one time step """
infect = infection(world[‘SIR‘], infection_rate, incubation_rate)
disperse = dispersion(world[‘SIR‘], dispersion_kernel, dispersion_rates)
world[‘SIR‘] += dt*( infect + disperse)
world[‘t‘] += dt
# 用MoviePy制作动画
def world_to_npimage(world):
""" Converts the world‘s map into a RGB image for the final video."""
coefs = np.array([2,25,25]).reshape((3,1,1))
accentuated_world = 255*coefs*world[‘SIR‘]
image = accentuated_world[::-1].swapaxes(0,2).swapaxes(0,1)
return np.minimum(255, image)
def make_frame(t):
""" Return the frame for time t """
while world[‘t‘] < hours_per_second*t:
update(world)
return world_to_npimage(world)
animation = mpy.VideoClip(make_frame, duration=25)
# 可以将结果写为视频或GIF(速度较慢)
#animation.write_gif(make_frame, fps=15)
animation.write_videofile(‘test.mp4‘, fps=20)
最终效果如下:
将动画组合到一起
如果一个动画不够好看,那就来两个!我们可以借助 MoviePy 的视频组合功能将来自不同库的动画组合在一起:
import moviepy.editor as mpy
# 我们使用之前生成的GIF图以避免重新计算动画
clip_mayavi = mpy.VideoFileClip("sinc.gif")
clip_mpl = mpy.VideoFileClip("sinc_mpl.gif").resize(height=clip_mayavi.h)
animation = mpy.clips_array([[clip_mpl, clip_mayavi]])
animation.write_gif("sinc_plot.gif", fps=20)
或者更有艺术气息一点:
# 在in clip_mayavi中将白色变为透明
clip_mayavi2 = (clip_mayavi.fx( mpy.vfx.mask_color, [255,255,255])
.set_opacity(.4) # whole clip is semi-transparent
.resize(height=0.85*clip_mpl.h)
.set_pos(‘center‘))
animation = mpy.CompositeVideoClip([clip_mpl, clip_mayavi2])
animation.write_gif("sinc_plot2.gif", fps=20)
我们也可以对动画注释,这点在比较不同的算法和过滤器时,非常有用。我们展示一下来自 Scikit-image 库中的四张变换图像:
import moviepy.editor as mpy
import skimage.exposure as ske # 改变尺度,直方图
import skimage.filter as skf # 高斯模糊
clip = mpy.VideoFileClip("sinc.gif")
gray = clip.fx(mpy.vfx.blackwhite).to_mask()
def apply_effect(effect, title, **kw):
""" Returns a clip with the effect applied and a title"""
filtr = lambda im: effect(im, **kw)
new_clip = gray.fl_image(filtr).to_RGB()
txt = (mpy.TextClip(title, font="Purisa-Bold", fontsize=15)
.set_position(("center","top"))
.set_duration(clip.duration))
return mpy.CompositeVideoClip([new_clip,txt])
# 为原始动画应用4种不同的效果
equalized = apply_effect(ske.equalize_hist, "Equalized")
rescaled = apply_effect(ske.rescale_intensity, "Rescaled")
adjusted = apply_effect(ske.adjust_log, "Adjusted")
blurred = apply_effect(skf.gaussian_filter, "Blurred", sigma=4)
# 将片段一起放在2 X 2的网格上,写入一个文件
finalclip = mpy.clips_array([[ equalized, adjusted ],
[ blurred, rescaled ]])
final_clip.write_gif("test2x2.gif", fps=20)
如果我们用 concatenate_videoclips 代替 CompositeVideoClip 和 clips_array,会得到标题效果式的动画:
import moviepy.editor as mpy
import skimage.exposure as ske
import skimage.filter as skf
clip = mpy.VideoFileClip("sinc.gif")
gray = clip.fx(mpy.vfx.blackwhite).to_mask()
def apply_effect(effect, label, **kw):
""" Returns a clip with the effect applied and a top label"""
filtr = lambda im: effect(im, **kw)
new_clip = gray.fl_image(filtr).to_RGB()
txt = (mpy.TextClip(label, font="Amiri-Bold", fontsize=25,
bg_color=‘white‘, size=new_clip.size)
.set_position(("center"))
.set_duration(1))
return mpy.concatenate_videoclips([txt, new_clip])
equalized = apply_effect(ske.equalize_hist, "Equalized")
rescaled = apply_effect(ske.rescale_intensity, "Rescaled")
adjusted = apply_effect(ske.adjust_log, "Adjusted")
blurred = apply_effect(skf.gaussian_filter, "Blurred", sigma=4)
clips = [equalized, adjusted, blurred, rescaled]
animation = mpy.concatenate_videoclips(clips)
animation.write_gif("sinc_cat.gif", fps=15)
希望本文能帮你制作出令人惊艳的动画可视化。借助 MoviePy,也能将其它库的可视化转换为动画,只要其输出能转换成 Numpy 数组。
有些库本身也有动画模块,但通常修正和维护起来比较痛苦,MoviePy 相对稳定的多,也可以适用于很多情况。
另外,另一个 Python 库 ImageIO 也能编写视频,可以提供一个很简单的接口来读取或写入任何种类的图像、视频和容积数据。比如你可以用 imwrite() 写图像,用 mimwrite() 写视频/ GIF,用 volwrite() 写体积数据,或只是用 write() 写流式数据。
快去动手操作吧,GIF 万岁!
把Python爬的数据滚动起来!你会发现一件神奇的事情!动画可视化
标签:gauss 背景颜色 wap edit 单位 nat 不同的 gaussian image
原文地址:https://www.cnblogs.com/sm123456/p/9026569.html