标签:extern sar int bsp += nbsp sha ISE hid
文字识别
# -*- coding: utf-8 -*- """ 简介:用样本训练数据,再识别 """ import cv2 import numpy as np from PIL import Image #Python Image Lib import skimage.feature as feature2d import sklearn.neighbors as nhb from sklearn.externals import joblib #对训练模型保存或读取 #cvhog=cv2.HOGDescriptor() #预处理图片 def imgPrepare(filename): img=cv2.imread(filename,0) img=np.uint8(img/img.ptp()*255) img=np.where(img>128,255,img) img=np.where(img<=128,0,img) img=np.bitwise_not(img) return img #横切 def splitchar(img,axis=1): idxrowb=np.all(img<64,axis=axis) idxrowi=np.uint8(idxrowb).ravel() dy=idxrowi[1:]-idxrowi[:-1] #print(dy) rowb=np.argwhere(dy==255).ravel() rowe=np.argwhere(dy==1).ravel() #print(rowb,rowe) if axis==1: imglines=[img[b:e+1,:] for b,e in zip(rowb,rowe)] else: imglines=[img[:,b:e+1] for b,e in zip(rowb,rowe)] return imglines #切块 def splitBox(img): idxrowb=np.all(img<64,axis=1) idxrowi=np.uint8(idxrowb).ravel() dy=idxrowi[1:]-idxrowi[:-1] #print(dy) rowb=np.argwhere(dy==255).ravel() rowe=np.argwhere(dy==1).ravel() b=0 e=-1 if len(rowe)>0: e=rowe[-1]+1 if len(rowb)>0: b=rowb[0] return img[b:e,:] #把图片整成一样大小 def myResize(img,size=(48,48)): h,w=img.shape bw=max(h,w) bh=bw bimg=np.zeros((bh,bw),np.uint8) if bw==w: dh=(bh-h)//2 bimg[dh:dh+h,:]=img[:,:] else: dw=(bw-w)//2 bimg[:,dw:dw+w]=img[:,:] bimg=cv2.resize(bimg,size) return bimg #获取hog向量 图片转为向量 def getHog(img,cell=(16,16),block=(3,3)): vec=feature2d.hog(img,12,cell,block,‘L2‘) return vec #训练的主方法 gimg=imgPrepare(‘e:/sx.jpg‘) lines=splitchar(gimg,axis=1) chars=[] for line in lines: charlist=splitchar(line,axis=0) cchars=[ myResize(splitBox(c)) for c in charlist] chars.append(cchars) chars=np.asarray(chars) X=[] Y=[] y=0 for linech in chars: for ch in linech: chhog=getHog(ch) X.append(chhog) Y.append(y) y+=1 KNC=nhb.KNeighborsClassifier(algorithm=‘ball_tree‘,n_neighbors=3) KNC.fit(X,Y) joblib.dump(KNC,‘knc.knn‘) # 识别的主方法 def predict(img): knc=nhb.KNeighborsClassifier(algorithm=‘ball_tree‘,n_neighbors=3) knc=joblib.load(‘knc.knn‘) lines=splitchar(img,axis=1) chars=[] for line in lines: charlist=splitchar(line,axis=0) cchars=[ myResize(splitBox(c)) for c in charlist] chars.append(cchars) chars=np.asarray(chars) Y=[] for linech in chars: x=[] for ch in linech: chhog=getHog(ch) x.append(chhog) y=knc.predict(x) print(y) Y.append(y) return Y
标签:extern sar int bsp += nbsp sha ISE hid
原文地址:https://www.cnblogs.com/hellangels333/p/9053682.html