码迷,mamicode.com
首页 > 编程语言 > 详细

python多进程(一)

时间:2018-05-20 21:54:08      阅读:217      评论:0      收藏:0      [点我收藏+]

标签:适合   for   逗号   child   读写文件   end   pid   理由   强制   

 

操作系统进程


Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。
进程是程序在计算机上的一次执行活动。当你运行一个程序,你就启动了一个进程。显然,程序是死的(静态的),进程是活的(动态的)。进程可以分为系统进程和用户进程。凡是用于完成操作系统的各种功能的进程就是系统进程,它们就是处于运行状态下的操作系统本身。所有由你启动的进程都是用户进程。
通俗地讲,在操作系统的管理下,所有正在运行的进程轮流使用CPU,每个进程允许占用CPU的时间非常短(比如10毫秒),这样用户根本感觉不出来CPU是在轮流为多个进程服务,就好象所有的进程都在不间断地运行一样。但实际上在任何一个时间内有且仅有一个进程占有CPU。

 

多进程


多进程和多线程的区别
多线程使用的是cpu的一个核,适合io密集型。
多进程使用的是cpu的多个核,适合运算密集型。

Multiprocessing支持子进程,通信,共享数据,执行不同形式的同步,提供了Process,Pipe, Lock等组件。

 

Process

创建一个Process对象

p = multiprocessing.Process(target=worker_1, args=(2, ))

target = 函数名字
args = 函数需要的参数,以tuple的形式传入
注意: 单个元素的tuple的表现形式(元素,)有一个逗号

multprocessing用到的两个方法
cpu_count()          统计cpu总数
active_children()   获得所有子进程

 

Process的对象常用方法

is_alive()    判断进程是否存活
run()           启动进程
start()         启动进程,会自动调用run方法,这个常用
join(timeout) 等待进程结束或者直到超时

 

Process的常用属性

name 进程名字
pid 进程的pid

 

相关代码示例

import multiprocessing

import time


def worker(args, interval):
    print("start worker {0}".format(args))
    time.sleep(interval)
    print("end worker {0}".format(args))

def main():
    print("start main")
    p1 = multiprocessing.Process(target=worker, args=(1, 1))
    p2 = multiprocessing.Process(target=worker, args=(2, 2))
    p3 = multiprocessing.Process(target=worker, args=(3, 3))
    p1.start()
    p2.start()
    p3.start()
    print("end main")

if __name__ == __main__:
    main()

结果:
start main
end main
start worker 1
start worker 3
start worker 2
end worker 1
end worker 2
end worker 3

 

p = multiprocessing.Process(target=, args=)
target 指定的是当进程执行时,需要执行的函数
args 是当进程执行时,需要给函数传入的参数
注意: args必须是一个tuple, 特别是当函数需要传入一个参数时 (1,)
p 代表的是一个多进程
p.is_alive() 判断进程是否存活
p.run() 启动进程
p.start() 启动进程,他会自动调用run方法,推荐使用start
p.join(timeout) 等待子进程结束或者到超时时间后再继续往下执行
p.terminate() 强制子进程退出
p.name 进程的名字
p.pid 进程的pid

 

import multiprocessing

import time


def worker(args, interval):
    print("start worker {0}".format(args))
    time.sleep(interval)
    print("end worker {0}".format(args))

def main():
    print("start main")
    p1 = multiprocessing.Process(target=worker, args=(1, 1))
    p2 = multiprocessing.Process(target=worker, args=(2, 2))
    p3 = multiprocessing.Process(target=worker, args=(3, 3))
    p1.start()
    p1.join(timeout=0.5)
    p2.start()
    p3.start()
    print("the number of CPU is: {0}".format(multiprocessing.cpu_count()))
    for p in multiprocessing.active_children():
       print("The name of active children is: {0}, pid is: {1} is alive".format(p.name, p.pid))
    print("end main")

if __name__ == __main__:
    main()

结果:
start main
start worker 1
the number of CPU is: 4
The name of active children is: Process-3, pid is: 9056 is alive
The name of active children is: Process-2, pid is: 5844 is alive
The name of active children is: Process-1, pid is: 8428 is alive
end main
start worker 2
start worker 3
end worker 1
end worker 2
end worker 3

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。

 

Lock组件


当我们用多进程来读写文件的时候,如果一个进程是写文件,一个进程是读文件,如果两个文件同时进行,肯定是不行的,必须是文件写结束以后,才可以进行读操作。或者是多个进程在共享一些资源的时候,同时只能有一个进程进行访问,那就要有一个锁机制进行控制。

当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。主要用到了lock.acquire() 和lock.release()

import time

import multiprocessing


def add1(lock, value, number):
    with lock:
        print("start add1 number= {0}".format(number))
        for i in range(1, 5):
            number += value
            time.sleep(0.3)
            print("number = {0}".format(number))

def add3(lock, value, number):
    lock.acquire()
    print("start add3 number= {0}".format(number))
    try:
        for i in range(1, 5):
            number += value
            time.sleep(0.3)
            print("number = {0}".format(number))
    except Exception as e:
        raise e
    finally:
        lock.release()
        pass

if __name__ == __main__:
    print("start main")
    number = 0
    lock = multiprocessing.Lock()
    p1 = multiprocessing.Process(target=add1, args=(lock, 1, number))
    p3 = multiprocessing.Process(target=add3, args=(lock, 3, number))
    p1.start()
    p3.start()
    print("end main")

结果:
start main
end main
start add3 number= 0
number = 3
number = 6
number = 9
number = 12
start add1 number= 0
number = 1
number = 2
number = 3
number = 4

 

共享内存


python的multiprocessing模块也给我们提供了共享内存的操作。
一般的变量在进程之间是没法进行通讯的,multiprocessing给我们提供了Value和Array模块,他们可以在不通的进程中共同使用,Value 和 Array 都需要设置其中存放值的类型,d 是 double 类型,i 是 int 类型。

import time

import multiprocessing

from multiprocessing import Value, Array, Manager


def add1(value, number):
    print("start add1 number= {0}".format(number.value))
    for i in range(1, 5):
        number.value += value
        print("number = {0}".format(number.value))

def add3(value, number):
    print("start add3 number= {0}".format(number.value))
    try:
        for i in range(1, 5):
            number.value += value
            print("number = {0}".format(number.value))
    except Exception as e:
        raise e

if __name__ == __main__:
    print("start main")
    number = Value(d, 0)
    p1 = multiprocessing.Process(target=add1, args=(1, number))
    p3 = multiprocessing.Process(target=add3, args=(3, number))
    p1.start()
    p3.start()
    print("end main")

结果:
start main
end main
start add1 number= 0.0
number = 1.0
number = 2.0
number = 3.0
number = 4.0
start add3 number= 4.0
number = 7.0
number = 10.0
number = 13.0
number = 16.0

 

python多进程(一)

标签:适合   for   逗号   child   读写文件   end   pid   理由   强制   

原文地址:https://www.cnblogs.com/yangjian319/p/9064665.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!