标签:结果 https length class 返回 lin 源码解析 复杂度 style
排序算法一直是各种语言最简单也是最复杂的算法,例如十大经典排序算法(动图演示)里面讲的那样
第一次看lists的sort方法的时候,蒙了,几百行的代码,我心想要这么复杂么(因为C语言的冒泡排序我记得不超过30行),于是自己就实现了下
结果更蒙了
bubble_sort(L)-> bubble_sort(L,length(L)). bubble_sort(L,0)-> L; bubble_sort(L,N)-> bubble_sort(do_bubble_sort(L),N-1). do_bubble_sort([A])-> [A]; do_bubble_sort([A,B|R])-> case A<B of true -> [A|do_bubble_sort([B|R])]; false -> [B|do_bubble_sort([A|R])] end.
对比结果如下
6> timer:tc(tt1,bubble_sort,[B]). {21130, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, 23,24,25,26,27|...]} 7> timer:tc(lists,sort,[B]). {162, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, 23,24,25,26,27|...]} 8>
B是一个打乱顺序的1到1000的序列,我X,这不是一个数量级的算法啊~~~~,不是说好越简单的代码越快么,三观被刷新了。
还是老实读lists的源码,一共300+行,摘录于lists.er
-spec sort(List1) -> List2 when List1 :: [T], List2 :: [T], T :: term(). sort([X, Y | L] = L0) when X =< Y -> case L of [] -> L0; [Z] when Y =< Z -> L0; [Z] when X =< Z -> [X, Z, Y]; [Z] -> [Z, X, Y]; _ when X == Y -> sort_1(Y, L, [X]); _ -> split_1(X, Y, L, [], []) end; sort([X, Y | L]) -> case L of [] -> [Y, X]; [Z] when X =< Z -> [Y, X | L]; [Z] when Y =< Z -> [Y, Z, X]; [Z] -> [Z, Y, X]; _ -> split_2(X, Y, L, [], []) end; sort([_] = L) -> L; sort([] = L) -> L. sort_1(X, [Y | L], R) when X == Y -> sort_1(Y, L, [X | R]); sort_1(X, [Y | L], R) when X < Y -> split_1(X, Y, L, R, []); sort_1(X, [Y | L], R) -> split_2(X, Y, L, R, []); sort_1(X, [], R) -> lists:reverse(R, [X]). %% Ascending. split_1(X, Y, [Z | L], R, Rs) when Z >= Y -> % io:format("here is 131 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p~n",[X, Y, Z, L, R, Rs]), split_1(Y, Z, L, [X | R], Rs); split_1(X, Y, [Z | L], R, Rs) when Z >= X -> % io:format("here is 134 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p~n",[X, Y, Z, L, R, Rs]), split_1(Z, Y, L, [X | R], Rs); split_1(X, Y, [Z | L], [], Rs) -> % io:format("here is 137 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p~n",[X, Y, Z, L, [], Rs]), split_1(X, Y, L, [Z], Rs); split_1(X, Y, [Z | L], R, Rs) -> % io:format("here is 140 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p~n",[X, Y, Z, L, R, Rs]), split_1_1(X, Y, L, R, Rs, Z); split_1(X, Y, [], R, Rs) -> % io:format("here is 143 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p~n",[X, Y, [[Y, X | R] | Rs], [], R, Rs]), rmergel([[Y, X | R] | Rs], []). split_1_1(X, Y, [Z | L], R, Rs, S) when Z >= Y -> % io:format("here is 147 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p,S:~p~n",[X, Y, Z, L, R, Rs, S]), split_1_1(Y, Z, L, [X | R], Rs, S); split_1_1(X, Y, [Z | L], R, Rs, S) when Z >= X -> % io:format("here is 150 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p,S:~p~n",[X, Y, Z, L, R, Rs, S]), split_1_1(Z, Y, L, [X | R], Rs, S); split_1_1(X, Y, [Z | L], R, Rs, S) when S =< Z -> % io:format("here is 153 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p,S:~p~n",[X, Y, Z, L, R, Rs, S]), split_1(S, Z, L, [], [[Y, X | R] | Rs]); split_1_1(X, Y, [Z | L], R, Rs, S) -> % io:format("here is 156 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p,S:~p~n",[X, Y, Z, L, R, Rs, S]), split_1(Z, S, L, [], [[Y, X | R] | Rs]); split_1_1(X, Y, [], R, Rs, S) -> % io:format("here is 159 X:~p,Y:~p,Z:~p,L:~p,R:~p,Rs:~p,S:~p~n",[X, Y, [[S], [Y, X | R] | Rs], [], R, Rs, S]), rmergel([[S], [Y, X | R] | Rs], []). %% Descending. split_2(X, Y, [Z | L], R, Rs) when Z =< Y -> split_2(Y, Z, L, [X | R], Rs); split_2(X, Y, [Z | L], R, Rs) when Z =< X -> split_2(Z, Y, L, [X | R], Rs); split_2(X, Y, [Z | L], [], Rs) -> split_2(X, Y, L, [Z], Rs); split_2(X, Y, [Z | L], R, Rs) -> split_2_1(X, Y, L, R, Rs, Z); split_2(X, Y, [], R, Rs) -> mergel([[Y, X | R] | Rs], []). split_2_1(X, Y, [Z | L], R, Rs, S) when Z =< Y -> split_2_1(Y, Z, L, [X | R], Rs, S); split_2_1(X, Y, [Z | L], R, Rs, S) when Z =< X -> split_2_1(Z, Y, L, [X | R], Rs, S); split_2_1(X, Y, [Z | L], R, Rs, S) when S > Z -> split_2(S, Z, L, [], [[Y, X | R] | Rs]); split_2_1(X, Y, [Z | L], R, Rs, S) -> split_2(Z, S, L, [], [[Y, X | R] | Rs]); split_2_1(X, Y, [], R, Rs, S) -> mergel([[S], [Y, X | R] | Rs], []). %% merge/1 mergel([[] | L], Acc) -> mergel(L, Acc); mergel([T1, [H2 | T2], [H3 | T3] | L], Acc) -> mergel(L, [merge3_1(T1, [], H2, T2, H3, T3) | Acc]); mergel([T1, [H2 | T2]], Acc) -> rmergel([merge2_1(T1, H2, T2, []) | Acc], []); mergel([L], []) -> L; mergel([L], Acc) -> rmergel([lists:reverse(L, []) | Acc], []); mergel([], []) -> []; mergel([], Acc) -> rmergel(Acc, []); mergel([A, [] | L], Acc) -> mergel([A | L], Acc); mergel([A, B, [] | L], Acc) -> mergel([A, B | L], Acc). rmergel([[H3 | T3], [H2 | T2], T1 | L], Acc) -> rmergel(L, [rmerge3_1(T1, [], H2, T2, H3, T3) | Acc]); rmergel([[H2 | T2], T1], Acc) -> mergel([rmerge2_1(T1, H2, T2, []) | Acc], []); rmergel([L], Acc) -> mergel([lists:reverse(L, []) | Acc], []); rmergel([], Acc) -> mergel(Acc, []). %% merge3/3 %% Take L1 apart. merge3_1([H1 | T1], M, H2, T2, H3, T3) when H1 =< H2 -> merge3_12(T1, H1, H2, T2, H3, T3, M); merge3_1([H1 | T1], M, H2, T2, H3, T3) -> merge3_21(T1, H1, H2, T2, H3, T3, M); merge3_1([], M, H2, T2, H3, T3) when H2 =< H3 -> merge2_1(T2, H3, T3, [H2 | M]); merge3_1([], M, H2, T2, H3, T3) -> merge2_2(T2, H3, T3, M, H2). %% Take L2 apart. merge3_2(T1, H1, M, [H2 | T2], H3, T3) when H1 =< H2 -> merge3_12(T1, H1, H2, T2, H3, T3, M); merge3_2(T1, H1, M, [H2 | T2], H3, T3) -> merge3_21(T1, H1, H2, T2, H3, T3, M); merge3_2(T1, H1, M, [], H3, T3) when H1 =< H3 -> merge2_1(T1, H3, T3, [H1 | M]); merge3_2(T1, H1, M, [], H3, T3) -> merge2_2(T1, H3, T3, M, H1). % H1 =< H2. Inlined. merge3_12(T1, H1, H2, T2, H3, T3, M) when H1 =< H3 -> merge3_1(T1, [H1 | M], H2, T2, H3, T3); merge3_12(T1, H1, H2, T2, H3, T3, M) -> merge3_12_3(T1, H1, H2, T2, [H3 | M], T3). % H1 =< H2, take L3 apart. merge3_12_3(T1, H1, H2, T2, M, [H3 | T3]) when H1 =< H3 -> merge3_1(T1, [H1 | M], H2, T2, H3, T3); merge3_12_3(T1, H1, H2, T2, M, [H3 | T3]) -> merge3_12_3(T1, H1, H2, T2, [H3 | M], T3); merge3_12_3(T1, H1, H2, T2, M, []) -> merge2_1(T1, H2, T2, [H1 | M]). % H1 > H2. Inlined. merge3_21(T1, H1, H2, T2, H3, T3, M) when H2 =< H3 -> merge3_2(T1, H1, [H2 | M], T2, H3, T3); merge3_21(T1, H1, H2, T2, H3, T3, M) -> merge3_21_3(T1, H1, H2, T2, [H3 | M], T3). % H1 > H2, take L3 apart. merge3_21_3(T1, H1, H2, T2, M, [H3 | T3]) when H2 =< H3 -> merge3_2(T1, H1, [H2 | M], T2, H3, T3); merge3_21_3(T1, H1, H2, T2, M, [H3 | T3]) -> merge3_21_3(T1, H1, H2, T2, [H3 | M], T3); merge3_21_3(T1, H1, H2, T2, M, []) -> merge2_2(T1, H2, T2, M, H1). %% rmerge/3 %% Take L1 apart. rmerge3_1([H1 | T1], M, H2, T2, H3, T3) when H1 =< H2 -> rmerge3_12(T1, H1, H2, T2, H3, T3, M); rmerge3_1([H1 | T1], M, H2, T2, H3, T3) -> rmerge3_21(T1, H1, H2, T2, H3, T3, M); rmerge3_1([], M, H2, T2, H3, T3) when H2 =< H3 -> rmerge2_2(T2, H3, T3, M, H2); rmerge3_1([], M, H2, T2, H3, T3) -> rmerge2_1(T2, H3, T3, [H2 | M]). %% Take L2 apart. rmerge3_2(T1, H1, M, [H2 | T2], H3, T3) when H1 =< H2 -> rmerge3_12(T1, H1, H2, T2, H3, T3, M); rmerge3_2(T1, H1, M, [H2 | T2], H3, T3) -> rmerge3_21(T1, H1, H2, T2, H3, T3, M); rmerge3_2(T1, H1, M, [], H3, T3) when H1 =< H3 -> rmerge2_2(T1, H3, T3, M, H1); rmerge3_2(T1, H1, M, [], H3, T3) -> rmerge2_1(T1, H3, T3, [H1 | M]). % H1 =< H2. Inlined. rmerge3_12(T1, H1, H2, T2, H3, T3, M) when H2 =< H3 -> rmerge3_12_3(T1, H1, H2, T2, [H3 | M], T3); rmerge3_12(T1, H1, H2, T2, H3, T3, M) -> rmerge3_2(T1, H1, [H2 | M], T2, H3, T3). % H1 =< H2, take L3 apart. rmerge3_12_3(T1, H1, H2, T2, M, [H3 | T3]) when H2 =< H3 -> rmerge3_12_3(T1, H1, H2, T2, [H3 | M], T3); rmerge3_12_3(T1, H1, H2, T2, M, [H3 | T3]) -> rmerge3_2(T1, H1, [H2 | M], T2, H3, T3); rmerge3_12_3(T1, H1, H2, T2, M, []) -> rmerge2_2(T1, H2, T2, M, H1). % H1 > H2. Inlined. rmerge3_21(T1, H1, H2, T2, H3, T3, M) when H1 =< H3 -> rmerge3_21_3(T1, H1, H2, T2, [H3 | M], T3); rmerge3_21(T1, H1, H2, T2, H3, T3, M) -> rmerge3_1(T1, [H1 | M], H2, T2, H3, T3). % H1 > H2, take L3 apart. rmerge3_21_3(T1, H1, H2, T2, M, [H3 | T3]) when H1 =< H3 -> rmerge3_21_3(T1, H1, H2, T2, [H3 | M], T3); rmerge3_21_3(T1, H1, H2, T2, M, [H3 | T3]) -> rmerge3_1(T1, [H1 | M], H2, T2, H3, T3); rmerge3_21_3(T1, H1, H2, T2, M, []) -> rmerge2_1(T1, H2, T2, [H1 | M]). %% merge/2 merge2_1([H1 | T1], H2, T2, M) when H1 =< H2 -> merge2_1(T1, H2, T2, [H1 | M]); merge2_1([H1 | T1], H2, T2, M) -> merge2_2(T1, H2, T2, M, H1); merge2_1([], H2, T2, M) -> lists:reverse(T2, [H2 | M]). merge2_2(T1, HdM, [H2 | T2], M, H1) when H1 =< H2 -> merge2_1(T1, H2, T2, [H1, HdM | M]); merge2_2(T1, HdM, [H2 | T2], M, H1) -> merge2_2(T1, H2, T2, [HdM | M], H1); merge2_2(T1, HdM, [], M, H1) -> lists:reverse(T1, [H1, HdM | M]). %% rmerge/2 rmerge2_1([H1 | T1], H2, T2, M) when H1 =< H2 -> rmerge2_2(T1, H2, T2, M, H1); rmerge2_1([H1 | T1], H2, T2, M) -> rmerge2_1(T1, H2, T2, [H1 | M]); rmerge2_1([], H2, T2, M) -> lists:reverse(T2, [H2 | M]). rmerge2_2(T1, HdM, [H2 | T2], M, H1) when H1 =< H2 -> rmerge2_2(T1, H2, T2, [HdM | M], H1); rmerge2_2(T1, HdM, [H2 | T2], M, H1) -> rmerge2_1(T1, H2, T2, [H1, HdM | M]); rmerge2_2(T1, HdM, [], M, H1) -> lists:reverse(T1, [H1, HdM | M]).
好,这是我见过最复杂的排序算法了。
这个算法和归并排序有点像,可是由于erlang的特性,变量不能变,使得和大部分的排序方法有很大的区别,这个算法的复杂度应该是0(2n)
这个算法可以份3大块,第一块是sort_*函数,第二块是split_*,第3块是rmergel和mergel
首先
sort([X, Y | L] = L0) when X =< Y -> %当list是3个对比会返回,当list超过3个进入sort_1或者splite_*函数 .......... sort([X, Y | L]) -> %分了2种情况,第一个元素大于第二个 或者 第一个元素小于等于第二个 ....... sort([_] = L) -> %list只有1个也直接返回 L; sort([] = L) -> %list为空直接返回 L. sort_1(X, [Y | L], R) when X == Y -> sort_1(Y, L, [X | R]); sort_1(X, [Y | L], R) when X < Y -> split_1(X, Y, L, R, []); sort_1(X, [Y | L], R) -> split_2(X, Y, L, R, []); sort_1(X, [], R) -> lists:reverse(R, [X]).
当这段代码还是比较清晰的,就说把超过3个元素的list传入split_*
下面看split_1系列
%% Ascending.
split_1(X, Y, [Z | L], R, Rs) when Z >= Y -> %这里的时候是X<Y,也就是Z>=Y就是说这时X<Y<=Z,我们把最小X的放到R里面,而且Y,Z替换X,Y
split_1(Y, Z, L, [X | R], Rs);
split_1(X, Y, [Z | L], R, Rs) when Z >= X -> %这里的时候Z>=X,也就是X<=Z<Y,我们把最小的X放到R里面,而且Z替代X成了Z,Y
split_1(Z, Y, L, [X | R], Rs);
split_1(X, Y, [Z | L], [], Rs) -> %这里的时候Z<X,也就是Z<X<Y,我们把最小的Z放到R里面(R目前为空)
split_1(X, Y, L, [Z], Rs);
split_1(X, Y, [Z | L], R, Rs) -> %这里的时候Z<X,也就是Z<X<Y,我们把最小的Z放到最后的参数(R不为空的时候),调用split_1_1,为什么???
split_1_1(X, Y, L, R, Rs, Z);
split_1(X, Y, [], R, Rs) -> %当列表完成后调用下个函数rmerge1,这个后面再讲
rmergel([[Y, X | R] | Rs], []).
WTF,这些到底在干什么,erlang又没有调试跟踪,又没说明,完全就蒙了,仔细研究下终于明白了这2个函数的意义,不得说写源码的真是大神啊~~~
通过上面的分析,我们知道了一个规律,每次都会比较3个数的大小,而且还会处理其中最小的数
X:下桩 Y:上桩, Z:目前list的第一个元素 R:经过排序了的list,Rs和S是split_1_1使用的变量
split_1这个函数的左右是把X,Y,Z中最小的放到R中,同时要保证这个数比R中现有的元素都大,
这个怎么保证呢,当Z>X(包括Z>X和Z>Y两种情况)的时候把直接X放进去R,
原因就是X一直小于Y,而且R里面的元素都比X小才放进去的,而且整个过程X和Y的值都是增加的,所以X肯定大于R中的任何一个
开始是R代表R中任何一个),假设Z0>Y0
当Z>X的时候也一样,于是当Z>X或者Z>Y的时候,只要把X的值放到R中就行,R里面的元素越来越大,是排好序的(从大到小),于是上面绿色的注释的代码就能理解了
蓝色的注释代码当R为空, Z<X<Y,当然R<Z<X<Y,于是也能理解了
主要是褐色的代码模块当R不为空,我们知道R<X<Y,而且Z<X<Y,可是R里面的元素和Z不能确定,
于是我们知道了当前最小的是Z,可是Z不一定大于R的所有元素,上面的split_1函数的逻辑就不通了,然后把Z存入到最后一个参数进入split_1_1
我们来查看split_1_1
split_1_1(X, Y, [Z | L], R, Rs, S) when Z >= Y -> %这时候X<Y<=Z,R<X, S<X我们这里不管S于是R<X<Y<=Z,按照上面逻辑,X存入R,Y,Z替换X,Y split_1_1(Y, Z, L, [X | R], Rs, S); split_1_1(X, Y, [Z | L], R, Rs, S) when Z >= X -> %这时候X<=Z<Y,R<X, S<X我们这里不管S于是R<X<=Z<Y,按照上面逻辑,X存入R,Z替换X split_1_1(Z, Y, L, [X | R], Rs, S); split_1_1(X, Y, [Z | L], R, Rs, S) when S =< Z -> %这时候S<=Z<X<Y,R<X,在这里我们知道Y>X>R,这里S,Z设置为X,Y,因为X,Y被重新设置,所以后面没有比较性 split_1(S, Z, L, [], [[Y, X | R] | Rs]); %于是我们把Y,X存入R(R里面的还是有序的),然后把R存入RS,清空R,返回到开始split_1的函数
split_1_1(X, Y, [Z | L], R, Rs, S) -> %当S>Z一样 split_1(Z, S, L, [], [[Y, X | R] | Rs]); split_1_1(X, Y, [], R, Rs, S) -> rmergel([[S], [Y, X | R] | Rs], []).
我们可以看到,紫色注释的代码,当S<=Z<X<Y,R<X我们知道最小的数是S,然后是Z,可是我们不能比较R里面的元素与这2个数的大小,
如果按照上面函数的逻辑,可以在弄个函数split_1_1_1,可这样函数不是闭环的,于是大神直接把肯定比R大的2个元素存入R(保证了R的有序),再回到split_1,这里真是太厉害了
1 X:12,Y:13,Z:54,L:[32,1,4521,32,214,541,1,12,3],R:[],Rs:[] 2 X:13,Y:54,Z:32,L:[1,4521,32,214,541,1,12,3],R:"\f",Rs:[] 3 X:32,Y:54,Z:1,L:[4521,32,214,541,1,12,3],R:"\r\f",Rs:[] 4 X:32,Y:54,Z:4521,L:[32,214,541,1,12,3],R:"\r\f",Rs:[],S:1 5 X:54,Y:4521,Z:32,L:[214,541,1,12,3],R:" \r\f",Rs:[],S:1 6 X:1,Y:32,Z:214,L:[541,1,12,3],R:[],Rs:[[4521,54,32,13,12]] 7 X:32,Y:214,Z:541,L:[1,12,3],R:[1],Rs:[[4521,54,32,13,12]] 8 X:214,Y:541,Z:1,L:[12,3],R:[32,1],Rs:[[4521,54,32,13,12]] 9 X:214,Y:541,Z:12,L:[3],R:[32,1],Rs:[[4521,54,32,13,12]],S:1 10 X:1,Y:12,Z:3,L:[],R:[],Rs:[[541,214,32,1],[4521,54,32,13,12]] 11 Rs:[[12,3,1],[541,214,32,1],[4521,54,32,13,12]]
我们看个简单的例子执行过程,大概就能明白这个逻辑了。
这里的List = [12,13,54,32,1,4521,32,214,541,1,12,3],这2个函数执行完成后的结果是[[12,3,1],[541,214,32,1],[4521,54,32,13,12]]
可以看到这里经过了N次循环(N是List长度),生成了几个子list,每个子list都是有序的,这样肯定没有完成,剩下的就是mergel和rmergel函数的作用了
篇幅太长,不好排版,下面的函数分析放
erlang下lists模块sort(排序)方法源码解析(二)
未完待续。。。
标签:结果 https length class 返回 lin 源码解析 复杂度 style
原文地址:https://www.cnblogs.com/tudou008/p/9071361.html