码迷,mamicode.com
首页 > 编程语言 > 详细

【2018.5.27会议记录】—— [ 算法原理 ]:手工特征提取的概念问题。

时间:2018-05-28 15:01:22      阅读:800      评论:0      收藏:0      [点我收藏+]

标签:像素   tail   image   并且   就是   分享图片   info   blog   inf   

1、提取 特征点 、特征描述子 与 提取特征向量 之间的区别:

  (1)、特征点:指的是一张图片上比较有代表性的‘位置’,提取特征点就是把图片中这些有代表性的位置给标出来。

  技术分享图片

  (2)、特征描述子:当提取出特征点之后,由于特征点是图片的某个位置,为了能够进行数学计算,我们需要给这些“位置”用一个数学方法来描述,于是可以用一个向量v来表示每一个位置。而这个向量就叫做 特征描述子

  (3)、特征向量:指的是通过对图片在像素层面上做一些变换(LBP、颜色特征、Sift、surf)之后,生成一个向量V,用这个向量就可以表示整张图片,这个向量就称为特征向量

 

2、理解SIFT图像检索与聚类算法的关系。

  (1)SIFT特征提取的流程:

    ①图片描述子建立:对一张图片进行特征点的提取(找到图片中有代表性的位置),并分别对这张图片中的每个特征点用特征描述子描述来描述(设这张图片有1000个特征点,每个描述子是128维向量)。

      技术分享图片

 

      算法核心思想:https://blog.csdn.net/weixin_38404120/article/details/73740612

    ②引入词袋模型:https://blog.csdn.net/garfielder007/article/details/51475550

      - 现在对图像库中所有图片(设有50张图片)的所有特征点(设每张图片特征点个数都为1000)进行提取并且建立描述子(这样总共有50 x 1000个描述子,且每个描述子维度为128)。而这50 x 1000 个描述子可以称为“词”

      - 现在引入 K-means 聚类算法,给这50 x 1000个描述子分成64类,即设定聚类中心为64,然后通过学习得到这50 x 1000个描述子应该各自在哪一类下。

      - 这样这64个类的每一类中都有 >不同个数;> 来自不同图片的描述子。

      - 当完成聚类后,这样64维的每一维度就相当于一个描述子集合,把每一个维度的这样的描述子集合称为“词袋

      技术分享图片

 

    ③特征向量的形成

      - 给这64为词袋建立一个对应的64维直方图。

      - 再看看一张图片中的所有特征描述子都对应在64维词袋哪些词袋中,只要某一个维度的词袋包含图片的一个特征描述子,那么在直方图上的对应维度就加一,知道这一张图片中的所有特征点描述子都遍历完全。这样最终的64维直方图就是这张图片的特征向量。

      技术分享图片

 

  (2)、图像检索:即比较 待检索 与 图片库中每张图片间 的特征向量距离,设定一个阈值,小于这个阈值的图片就检索出来。

 

【2018.5.27会议记录】—— [ 算法原理 ]:手工特征提取的概念问题。

标签:像素   tail   image   并且   就是   分享图片   info   blog   inf   

原文地址:https://www.cnblogs.com/lab210/p/9099681.html

(0)
(1)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!