标签:span 统一 webgl ever gpu ima create amp table
CPU与GPU设计目标不同,导致它们之间内部结构差异很大。
CPU需要应对通用场景,内部结构非常复杂。
而GPU往往面向数据类型统一,且相互无依赖的计算。
所以,我们在Web上实现3D场景时,通常使用WebGL利用GPU运算(大量顶点)。
但是,如果只是通用的计算场景呢?比如处理图片中大量像素信息,我们有办法使用GPU资源吗?这正是本文要讲的,GPU通用计算,简称GPGPU。
如下图所示,我们识别图片中彩虹糖色块,给糖果添加表情。
2.1、实例地址(打开页面后,依次点击按钮“使用CPU计算”、“使用GPU计算”):
http://tgideas.qq.com/2018/brucewan/gpgpu.html
2.2、运行代码:
1 var rgb2hsv = function(r, g, b) { 2 var max = Math.max(r, g, b), min = Math.min(r, g, b), 3 d = max - min, 4 h, 5 s = (max === 0 ? 0 : d / max), 6 v = max / 255; 7 switch (max) { 8 case min: h = 0; break; 9 case r: h = (g - b) + d * (g < b ? 6: 0); h /= 6 * d; break; 10 case g: h = (b - r) + d * 2; h /= 6 * d; break; 11 case b: h = (r - g) + d * 4; h /= 6 * d; break; 12 } 13 return { 14 h: self.hueIndexs[parseInt(h*360)], 15 s: s, 16 v: v 17 } 18 };
运行次数:262144次
2.3、测试结论:
实例中,我们分别使用GPU和CPU进行色相转换(防止光线影响识别准确度),其余步骤均一致。
测试平台 | 测试结论 |
PC | GPU较CPU优势较少 |
iOS | GPU较CPU优势较少 |
Android | vivoX20(运行10次平均) CPU:770ms,GPU:270 GPU较CPU快2.85倍 三星S7(运行10次平均) CPU:982ms,GPU:174ms GPU较CPU快5.64倍 |
2.4、使用GPGPU意义:
GPU与CPU数据传输过程,与GPU实际运算耗时相当,所以使用GPU运算传输成本过高,实测在Android中具有较大优势。
本测试案例是从webAR项目中抽取,需要实时跟踪用户摄像头处理视频流(256*256),使用GPU计算意义非常大,否则无法实现实时跟踪。
3.1、首先,我们通过一张流程图,演示原理:
3.2、实现:
3.2.1、创建顶点着色器,只是传递了贴图坐标。
1 attribute vec4 position; 2 varying vec2 vCoord; 3 void main() { 4 vCoord = position.xy * 0.5 + 0.5; 5 gl_Position = position; 6 }
3.2.2、创建片元着色器,根据贴图坐标贴图。
1 precision highp float; 2 varying vec2 vCoord; 3 uniform sampler2D map; 4 void main(void) { 5 vec4 color = texture2D(map, vCoord); 6 gl_FragColor = color; 7 }
3.3.3、根据如上着色器代码,创建程序对象,变量code是我们要传入的用于计算的代码。
1 // 绑定并编译着色器程序 2 var vertexShaderSource = ‘...‘; 3 var fragmentShaderSource = ‘...‘ + code + ‘...‘; 4 var vertexShader = gl.createShader(gl.VERTEX_SHADER); 5 gl.shaderSource(vertexShader, vertexShaderSource); 6 gl.compileShader(vertexShader); 7 var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER); 8 gl.shaderSource(fragmentShader, fragmentShaderSource); 9 gl.compileShader(fragmentShader); 10 11 // 创建程序对象 12 var program = gl.createProgram(); 13 gl.attachShader(program, vertexShader); 14 gl.attachShader(program, fragmentShader); 15 gl.linkProgram(program); 16 gl.useProgram(program);
3.3.4、传入顶点数据,创建一个面覆盖整个画布。
1 // 顶点数据传输 2 var vertices = new Float32Array([-1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0]); 3 var vertexBuffer = gl.createBuffer(); 4 gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer); 5 gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW); 6 var aPosition = gl.getAttribLocation(program, ‘position‘); 7 gl.vertexAttribPointer(aPosition, 2, gl.FLOAT, false, 0, 0); 8 gl.enableVertexAttribArray(aPosition);
3.3.5、传入原始数据,本例中传入我要处理的图像数据,作为贴图,最终绘制到屏幕。
1 var gl = this.gl; 2 var program = this.program; 3 var texture = gl.createTexture(); 4 var uMap = gl.getUniformLocation(program, ‘map‘); 5 6 gl.activeTexture(gl.TEXTURE0); 7 gl.bindTexture(gl.TEXTURE_2D, texture); 8 9 10 11 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, canvas); 12 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); 13 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); 14 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); 15 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); 16 gl.generateMipmap(gl.TEXTURE_2D); 17 18 gl.uniform1i(uMap, 0); 19 20 // 绘制 21 gl.clearColor(0, 0, 0, 1); 22 gl.clear(gl.COLOR_BUFFER_BIT); 23 gl.drawArrays(gl.TRIANGLE_FAN, 0, 4);
3.3.6、从最终绘制的画面上,获取颜色信息作为最终处理结果数据。
1 var pixels = new Uint8Array(gl.drawingBufferWidth * gl.drawingBufferHeight * 4); 2 gl.readPixels(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
3.3.7、完整代码:
http://tgideas.qq.com/2018/brucewan/gpu.js
其实清楚原理后,整体实现比较简单。
但是对于不了解WebGL的同学来说,理解上有一定难度,我后续准备写一个系列的WebGL教程,有兴趣的同学可以关注。
大家可以看到,我实现的gpu.js中,并没有将javascript转换成着色器语言(类C),而是用户直接传入着色器代码。但是github上已有将javascript转换为着色器语言的库。
https://github.com/gpujs/gpu.js
为什么我没有直接使用呢?
1、简单的使用,2k可以实现的代码,不想引入200k的库;
2、数据输入输出可以由自己灵活控制;
3、着色器语言很简单,特别只是使用基础运算逻辑的代码,没必要由库从Javascript转换。
没有WebGL基础的同学,建议直接使用https://github.com/gpujs/gpu.js,从本文理解整体逻辑;
有一定基础的同学,建议由http://tgideas.qq.com/2018/brucewan/gpu.js自己定制,更为灵活。
另外,这个组件我没打算深度封装,也没打算维护……嗯,就这样。
标签:span 统一 webgl ever gpu ima create amp table
原文地址:https://www.cnblogs.com/wanbo/p/9100962.html