标签:cas 允许 问题: bsp 使用 置信度 loss amp class
from sklearn.metrics import precision_score,recall_score
print (precision_score(y_true, y_scores,average=‘micro‘))
sklearn.metrics模块实现了一些loss, score以及一些工具函数来计算分类性能。一些metrics可能需要正例、置信度、或二分决策值的的概率估计。大多数实现允许每个sample提供一个对整体score来说带权重的分布,通过sample_weight参数完成。
一些二分类(binary classification)使用的case:
- matthews_corrcoef(y_true, y_pred)
- precision_recall_curve(y_true, probas_pred)
- roc_curve(y_true, y_score[, pos_label, …])
一些多分类(multiclass)使用的case:
- confusion_matrix(y_true, y_pred[, labels])
- hinge_loss(y_true, pred_decision[, labels, …])
一些多标签(multilabel)的case:
- accuracy_score(y_true, y_pred[, normalize, …])
- classification_report(y_true, y_pred[, …])
- f1_score(y_true, y_pred[, labels, …])
- fbeta_score(y_true, y_pred, beta[, labels, …])
- hamming_loss(y_true, y_pred[, classes])
- jaccard_similarity_score(y_true, y_pred[, …])
- log_loss(y_true, y_pred[, eps, normalize, …])
- precision_recall_fscore_support(y_true, y_pred)
- precision_score(y_true, y_pred[, labels, …])
- recall_score(y_true, y_pred[, labels, …])
- zero_one_loss(y_true, y_pred[, normalize, …])
还有一些可以同时用于二标签和多标签(不是多分类)问题:
- average_precision_score(y_true, y_score[, …])
- roc_auc_score(y_true, y_score[, average, …])
多分类评价指标python代码
标签:cas 允许 问题: bsp 使用 置信度 loss amp class
原文地址:https://www.cnblogs.com/ylHe/p/9122283.html