码迷,mamicode.com
首页 > 编程语言 > 详细

目标双站定位仿真C++代码

时间:2018-06-02 12:23:08      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:between   nba   应用程序   转换   opencv   pen   计算   int   out   

point-position2 初步完善版

先提取双站获得图像的匹配特征点,由双站位置信息解析目标位置。

技术分享图片

 

// point-position2.cpp : 定义控制台应用程序的入口点。
#include "stdafx.h"
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/nonfree/features2d.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include<math.h>
using namespace cv;

int main( int argc, char** argv )
{

    Mat img_1 = imread("book_in_scene.png");
    Mat img_2 = imread("book2.png");

    if( !img_1.data || !img_2.data )
    { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

    //-- Step 1: Detect the keypoints using SURF Detector
    int minHessian = 400;

    SiftFeatureDetector detector( minHessian );
    //SurfFeatureDetector detector( minHessian );

    vector<KeyPoint> keypoints_1, keypoints_2;

    detector.detect( img_1, keypoints_1 );
    detector.detect( img_2, keypoints_2 );

    //-- Step 2: Calculate descriptors (feature vectors)
    SiftDescriptorExtractor extractor;
    //SurfDescriptorExtractor extractor;

    Mat descriptors_1, descriptors_2;

    extractor.compute( img_1, keypoints_1, descriptors_1 );
    extractor.compute( img_2, keypoints_2, descriptors_2 );

    //-- Step 3: Matching descriptor vectors using FLANN matcher
    FlannBasedMatcher matcher;
    std::vector< DMatch > matches;
    matcher.match( descriptors_1, descriptors_2, matches );

    double max_dist = 0; double min_dist = 100;

    //-- Quick calculation of max and min distances between keypoints
    for( int i = 0; i < descriptors_1.rows; i++ )
    { double dist = matches[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
    }

    //printf("-- Max dist : %f \n", max_dist );
    //printf("-- Min dist : %f \n", min_dist );

    //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
    //-- PS.- radiusMatch can also be used here.
    std::vector< DMatch > good_matches;

    for( int i = 0; i < descriptors_1.rows; i++ )
    { if( matches[i].distance < 2*min_dist )
    { good_matches.push_back( matches[i]); }
    }

    //-- Draw only "good" matches
    Mat img_matches;
    drawMatches( img_1, keypoints_1, img_2, keypoints_2,
        good_matches, img_matches
        );

    //-- Show detected matches
    //imshow( "Good Matches", img_matches );
    //imwrite("Lena_match_surf.jpg",img_matches);
    //imwrite("Lena_match_sift.jpg",img_matches);
    //good_matches[i].queryIdx保存着第一张图片匹配点的序号,keypoints_1[good_matches[i].queryIdx].pt.x 为该序号对应的点的x坐标。y坐标同理
    //good_matches[i].trainIdx保存着第二张图片匹配点的序号,keypoints_2[good_matches[i].trainIdx].pt.x 为为该序号对应的点的x坐标。y坐标同理
    printf( "--Keypoint 1:%f,%f: %d  -- Keypoint 2:%f,%f: %d  \n",  
        keypoints_1[good_matches[0].queryIdx].pt.x,keypoints_1[good_matches[0].queryIdx].pt.y,good_matches[0].queryIdx, 
        keypoints_2[good_matches[0].trainIdx].pt.x,keypoints_2[good_matches[0].trainIdx].pt.y,good_matches[0].trainIdx );
    /*_______________________________________________________________________________________________________________________________*/

    double x_inImage1,y_inImage1,x_inImage2,y_inImage2,y,X,Y,alpha,gamma;//像面坐标(x,y)和图像尺寸(X,Y)以及成像视场角(alpha,gamma)
    double x1,y1,z1,x2,y2,z2;//双站坐标
    double alpha1,gamma1;//双站俯仰角和偏转角
    double alpha2,gamma2;
    
    //赋予初始值
    alpha1=45;
    gamma1=45;
    alpha2=270;
    gamma2=45;


    X=640;
    Y=480;
    double FOVx=10;
    double FOVy=FOVx*Y/X;
    x1=0,y1=0,z1=0;
    x2=0,y2=200,z2=0;

/*    //测角偏差补偿
    x_inImage1=keypoints_1[good_matches[0].queryIdx].pt.x;//目标点坐标由匹配所得
    y_inImage1=keypoints_1[good_matches[0].queryIdx].pt.y;
    x_inImage2=keypoints_2[good_matches[0].queryIdx].pt.x;
    y_inImage2=keypoints_2[good_matches[0].queryIdx].pt.y;

    double deviation_alpha1=(x_inImage1-X/2)/X*FOVx;
    double deviation_alpha2=(x_inImage2-X/2)/X*FOVx;
    double deviation_gamma1=(y_inImage1-Y/2)/X*FOVy;
    double deviation_gamma2=(y_inImage2-Y/2)/X*FOVy;

    alpha1=alpha1+deviation_alpha1;
    alpha2=alpha2+deviation_alpha2;
    gamma1=gamma1+deviation_gamma1;
    gamma2=gamma2+deviation_gamma2;
*/
    //开始计算
    double pi=16*(atan(1.0/5))-4*atan(1.0/239);//精确定义圆周率
    std::cout<<"pi为:"<<pi<<std::endl;
    alpha1=alpha1*pi/180;//角度弧度转换
    gamma1=gamma1*pi/180;
    alpha2=alpha2*pi/180;
    gamma2=gamma2*pi/180;

//    std::cout<<"cos(alpha1)为:"<<cos(alpha1)<<std::endl;
//    std::cout<<"cos(gamma1)为:"<<cos(gamma1)<<std::endl;
    double m1=(cos(alpha1))*(cos(gamma1));
    double n1=(sin(alpha1))*(cos(gamma1));
    double p1=sin(gamma1);
    double m2=(cos(alpha2))*(cos(gamma2));
    double n2=(sin(alpha2))*(cos(gamma2));
    double p2=sin(gamma2);

    std::cout<<"方向向量1为:"<<m1<<""<<n1<<""<<p1<<std::endl;
    std::cout<<"方向向量2为:"<<m2<<""<<n2<<""<<p2<<std::endl;

    double coplane;//共面判断
    coplane=(x2-x1)*(n1*p2-n2*p1)-(y2-y1)*(m1*p2-m2*p1)+(z2-z1)*(m1*n2-m2*n1);//coplane=0共面
    if(coplane)
    {
        //计算公垂线方向向量A1、B1、C1
        double A1=n1*p2-n2*p1;
        double B1=p1*m2-p2*m1;
        double C1=m1*n2-m2*n1;
        //
        double A2=n2*C1-p2*B1;
        double B2=p2*A1-m2*C1;
        double C2=m2*B1-n2*A1;

        double A3=n1*C1-p1*B1;
        double B3=p1*A1-m1*C1;
        double C3=m1*B1-n1*A1;

        double delta1=n1*(B1*C2-B2*C1)+m1*(A1*C2-A2*C1);
        double delta2=n2*(B1*C3-B3*C1)+m2*(A1*C3-A3*C1);
        double D1=A2*(x2-x1)+B2*(y2-y1)+C2*(z2-z1);
        double D2=A3*(x1-x2)+B3*(y1-y2)+C3*(z1-z2);

        double Xg,Yg,Zg,Xh,Yh,Zh,Xtarget,Ytarget,Ztarget;//两直线垂足G和H点坐标,目标点在其中点位置。
        Xg=x1-(D1*m1*C1)/delta1;
        Yg=y1-(D1*n1*C1)/delta1;
        Zg=z1+D1*(A1*m1+B1*n1)/delta1;
        Xh=x2-(D2*m2*C1)/delta2;
        Yh=y2-(D2*n2*C1)/delta2;
        Zh=z2+D2*(A1*m2+B1*n2)/delta2;

        Xtarget=(Xg+Xh)/2;
        Ytarget=(Yg+Yh)/2;
        Ztarget=(Zg+Zh)/2;

        std::cout<<"目标坐标为:"<<Xtarget<<""<<Ytarget<<""<<Ztarget<<std::endl<<std::endl;
    }
    else//两线共面且相交,引入参数t
    {
        double t;
        t=(p2*(y1-y2)+n2*(z2-z1))/(n2*p1-p2*n1);
        double Xtarget,Ytarget,Ztarget;
        Xtarget=x1+m1*t;
        Ytarget=y1+n1*t;
        Ztarget=z1+p1*t;
        std::cout<<"目标坐标为:"<<Xtarget<<""<<Ytarget<<""<<Ztarget<<std::endl<<std::endl;
    }
    getchar();
    //waitKey(0);
    return 0;
}

 

目标双站定位仿真C++代码

标签:between   nba   应用程序   转换   opencv   pen   计算   int   out   

原文地址:https://www.cnblogs.com/wxl845235800/p/9125006.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!