标签:sql优化
设计索引的主要目的就是帮助我们快速获取查询结果,而以%开头的like查询则不能够使用B-Tree索引。纸上得来终觉浅,绝知此事要躬行:
创建测试表test,表上有自增主键primary(id)和二级索引idx_name1(name1),表中有500万条数据。
mysql> desc test;
+--------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name1 | varchar(20) | YES | MUL | NULL | |
| name2 | varchar(20) | YES | | NULL | |
| name3 | varchar(20) | YES | | NULL | |
| name4 | varchar(20) | YES | | NULL | |
| name5 | varchar(20) | YES | | NULL | |
| name6 | varchar(20) | YES | | NULL | |
| name7 | varchar(20) | YES | | NULL | |
| name8 | varchar(20) | YES | | NULL | |
| name9 | varchar(20) | YES | | NULL | |
| name10 | varchar(20) | YES | | NULL | |
+--------+-------------+------+-----+---------+----------------+
11 rows in set (0.01 sec)
mysql> show index from test\G
*************************** 1. row ***************************
Table: test
Non_unique: 0
Key_name: PRIMARY
Seq_in_index: 1
Column_name: id
Collation: A
Cardinality: 4829778
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:
*************************** 2. row ***************************
Table: test
Non_unique: 1
Key_name: idx_name1
Seq_in_index: 1
Column_name: name1
Collation: A
Cardinality: 2414889
Sub_part: NULL
Packed: NULL
Null: YES
Index_type: BTREE
Comment:
Index_comment:
2 rows in set (0.00 sec)
mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
| 5000000 |
+----------+
1 row in set (1.59 sec)
基于name1进行like查询,耗时11.13s,从执行计划看,sql在执行时走的是全表扫描(type: ALL):
mysql> select * from test where name1 like ‘%O4JljqZw%‘\G
*************************** 1. row ***************************
id: 1167352
name1: BO4JljqZws
name2: BrfLU7J69j
name3: XFikCVEilI
name4: lr0yz3qMsO
name5: vUUDghq8dx
name6: RvQvSHHg4p
name7: ESiDbQuK8f
name8: GugFnLtYe8
name9: OuPwY8BsiY
name10: O0oNGPX9IW
1 row in set (11.13 sec)
mysql> explain select * from test where name1 like ‘%O4JljqZw%‘\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: test
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 4829778
Extra: Using where
1 row in set (0.00 sec)
将sql改写为‘select a. from test a,(select id from test where name1 like ‘%O4JljqZw%‘) b where a.id=b.id;’
提示优化器在子查询中使用二级索引idx_name1获取id:
mysql> select a.* from test a,(select id from test where name1 like ‘%O4JljqZw%‘) b where a.id=b.id\G
*************************** 1. row ***************************
id: 1167352
name1: BO4JljqZws
name2: BrfLU7J69j
name3: XFikCVEilI
name4: lr0yz3qMsO
name5: vUUDghq8dx
name6: RvQvSHHg4p
name7: ESiDbQuK8f
name8: GugFnLtYe8
name9: OuPwY8BsiY
name10: O0oNGPX9IW
1 row in set (2.46 sec)
mysql> explain select a.* from test a,(select id from test where name1 like ‘%O4JljqZw%‘) b where a.id=b.id\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 4829778
Extra: NULL
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: a
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: b.id
rows: 1
Extra: NULL
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: test
type: index
possible_keys: NULL
key: idx_name1
key_len: 63
ref: NULL
rows: 4829778
Extra: Using where; Using index
3 rows in set (0.00 sec)
改写后的sql执行时间缩短至2.46s,效率提升了近4倍!
执行计划分析如下:
step 1:mysql先对二级索引idx_name1进行覆盖扫描取出符合条件的id(Using where; Using index)
step 2:对子step 1衍生出来的结果集table: <derived2>进行全表扫,获取id(本案例中只有一个id符合条件)
step 3:最后根据step 2中的id使用主键回表获取数据(type: eq_ref,key: PRIMARY )
总结:
在表中每条记录的数据量较大时,通过这种方法改写后的sql效率会有明显提升。
本实验中每条记录的数据量还很小,如果每条记录的数据量进一步加大,改写后sql的执行效率会有数量级的提升,大家可以自行验证~
标签:sql优化
原文地址:http://blog.51cto.com/13476134/2126048