码迷,mamicode.com
首页 > 编程语言 > 详细

R语言数值积分

时间:2018-06-07 21:49:26      阅读:1248      评论:0      收藏:0      [点我收藏+]

标签:数位   计算公式   function   length   sap   inf   mat   bsp   png   

  前两天对学习了R里面计算的基本范围,以及一些求解方程的方法,今天来看看积分,其实上个学期学了数值分析,对这部分的算法是有所了解的,当时是用matlab写了一遍,已经忘了怎么实现的了,现在用R重新写一遍吧,算法有梯形积分法,辛普森积分法,自适应积分法。

  • 梯形积分法

    梯形积分法可以用下图很好的解释

技术分享图片    就是将微积分的时候用的方法,取Δx,则一小块面积就约等于f(x)*Δx,连续函数在Δx趋于0的时候,该公式会越来越精确。

###设置小数位数
options(digits = 8)
func1 <- function(x) return(4*x^3)
###梯形积分法
tixing <- function(func, a, b, n=100){
  x <- 0
  h <- (b-a)/n
  for(i in 1:n){
    x <- h*func(a+i*h) + x
  }
  return(x)
}
tixing(func1,0,1,n=10000)

###可以看到这种近似较为粗糙,可以稍微改进一些
tixing2 <- function(func, a, b, n=100){
  h <- (b-a)/n
  add_by <- seq(a,b,by=h)
  f_x <- sapply(add_by,func)
  x <- h*sum(f_x[1]/2,f_x[2:n],f_x[n+1]/2)
  return(x)
}
tixing2(func1,0,1,n=100)
  • 辛普森方法

    辛普森方法和梯形方法类似,但是做了改进,前面我们改进的方法用的是梯形逼近,这样子f(x)其实是表示成了一段直线,辛普森方法使用抛物线来拟合,可              以降低误差。

    这里直接给出辛普森的计算公式

    S=h/3(f(x0)+4f(x1)+2f(x2)+4f(x3)+```+4f(xn-1)+f(xn))

    

###辛普森方法
simpson <- function(func, a, b, n=100){
  h <- (b-a)/n
  
  ###奇数项
  add_by_1 <- seq(a+h,b-h,by=2*h)
  ###偶数项
  add_by_2 <- add_by_1+h
  add_by_2 <- add_by_2[-length(add_by_2)]
  x <- h/3*sum(func(a),4*sapply(add_by_1,func),2*sapply(add_by_2,func),func(b))
  return(x)
}

    目前为止我们指定了运算次数n,而不是指定误差来计算,当然指定误差也是可以的,考虑一种循环,每次n都增加1,就可以完成这个目标了,但是这样运算            量会越来越大,所以推荐使用另一种方法,即公式本身具有的误差,可以又其本身和其n阶导数一起表示出来,具体的见数值分析相关书籍。

  • 自适应积分法

    这种方法我以前也没有过接触,书上讲它的基本思想是越是陡峭(导数大)的函数,需要的分割越细,越是平坦(导数小)的函数,需要的分割越少。详细            的,在进行运算的时候,先限定一个误差,然后将函数分割为两半,每边的误差均是误差的一半。这种方法的程序我再思考一下,还没想到怎么实现较好。

 

    

R语言数值积分

标签:数位   计算公式   function   length   sap   inf   mat   bsp   png   

原文地址:https://www.cnblogs.com/NEFPHYS/p/nef20180607.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!