码迷,mamicode.com
首页 > 数据库 > 详细

Mysql与索引有关的树的概念

时间:2018-06-17 16:08:37      阅读:179      评论:0      收藏:0      [点我收藏+]

标签:旋转   就会   多个   树结构   深度   style   左右子树   集合   一个   

1.简单地认识下与索引有关的数据结构: 
树的简单概念:由n个节点组成具有层次关系的集合,根朝上叶朝下 
树的特点:每个节点有0或多个子节点,无父节点称为根节点,每个非根节点有且只有一个父节点,每个节点可分为多个不相交的子树(父节点除外) 

技术分享图片

二叉树的简单概念:每个节点最多有2个子树的树结构,有左右子树之分 

技术分享图片

二叉查找树的简单概念:二叉树的前提下,左子树上所有节点的值均小于/等于其父节点的值,右子树上所有几点的值均大于/等于其父节点的值,左右子树也分别为二叉查找树 
二叉查找树的查找步骤:小于往左,大于往右,相等则查找成功,子树为空不成功 

技术分享图片

但是,二叉查找树遇到以下的情况效率会很低 

技术分享图片

存在某一节点高度过高

就有了平衡二叉树的存在
二叉平衡树的简单概念:在二叉查找树的前提下,任何节点的两棵子树的高度最大差为1(|BF|<=1) 
平衡因子(BF):BF=左子树深度—右子树深度 
要维持二叉平衡树的平衡,最为重要的是找到其最小不平衡树,最小不平衡树可以这样来找:找距离插入节点最近且平衡因子的绝对值大于1的结点为根的子树,找到最小不平衡树之后呢,需要将其变为平衡,主要是依靠旋转来实现的 
如何维持平衡(3种最小不平衡树,3种旋转方式): 
a.左旋:BF< -1时,父节点变为该节点的左节点 
b.右旋:BF> 1时,父节点变为该节点的右节点 
c.左旋+右旋 or 右旋+左旋:插入节点后,最小不平衡树的BF与它的子树的BF符号相反时,依具体情况先旋转一次使符号相同后,再反向旋转一次 

技术分享图片

但是,二叉树每一个节点最多也就对应2个子节点,节点一多的话树的高度就会很大,查找起来要遍历的层数会很多,效率还是个问题,于是,B+树便应运而生了 。

B+树的简单概念:一种特殊的平衡查找树,所有记录节点都是按键值大小顺序存放于同一层的叶子节点,各叶子节点以指针进行衔接,键值小在左,键值大在右 。

技术分享图片

叶子节点从左到右顺序遍历便可得到所有键值的顺序排序,这也是为什么联合索引需满足“最左前缀匹配”的原因。

 

Mysql与索引有关的树的概念

标签:旋转   就会   多个   树结构   深度   style   左右子树   集合   一个   

原文地址:https://www.cnblogs.com/cbxBlog/p/9192895.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!