标签:分析 保存 allocator and art 节点 创建 mask should
蓝牙进程中有多个线程,其中HCI 线程是负责处理蓝牙主机端和控制器的数据处理和收发的工作。
本篇文章就是分析一下该线程的数据处理流程。
首先看看hci的相关的接口:在hci_layer.c中:
const hci_t *hci_layer_get_interface() { buffer_allocator = buffer_allocator_get_interface(); hal = hci_hal_get_interface();//hal模块 btsnoop = btsnoop_get_interface(); hci_inject = hci_inject_get_interface(); packet_fragmenter = packet_fragmenter_get_interface();//组装分块 vendor = vendor_get_interface();//vendor模块 low_power_manager = low_power_manager_get_interface(); init_layer_interface(); return &interface; }
主要是结构是:hal,packet_fragmenter以及vendor,下面看看这个接口的结构:
static const hci_hal_t interface = { hal_init, hal_open,//通过vendor模块发送指令VENDOR_OPEN_USERIAL,打开host与controller的通信节点,并且在hci线程中一直poll该节点,有数据就传上层协议栈 hal_close, read_data, packet_finished, transmit_data, }; const hci_hal_t *hci_hal_h4_get_interface() { vendor = vendor_get_interface();//获取了vendor接口 return &interface; }
分析代码发现hal_open主要是通过vendor来和底层的模块通信的。可见hal层在vendor的上面。
static const packet_fragmenter_t interface = { init, cleanup, fragment_and_dispatch,//分片,然后回调到hci_layer,通过hal层发送 reassemble_and_dispatch//重装,然后回调到hci_layer,塞到btu_hci_queue队列里面 }; const packet_fragmenter_t *packet_fragmenter_get_interface() { controller = controller_get_interface();//获取控制器的接口 buffer_allocator = buffer_allocator_get_interface(); return &interface; }
该模块主要负责数据的分片和重组,当hci向下发送数据的时候,会将数据放置到packet_queue,然后调用到该模块的fragment_and_dispatch,然后经过HAL模块发送到vendor,最后抵达controller
当controller有数据上传的时候,底层的bt driver会将数据发送到host与controller的通信节点。hci_thread会一直poll这个节点,然后读出数据,经过hal以及fragment_and_dispatch,最后送到btu线程。
static const vendor_t interface = { vendor_open,//加载libbt-vendor模块并对模块初始化 vendor_close, send_command,//通过libbt-vendor进行发送op命令,非hci opcode send_async_command, set_callback, }; const vendor_t *vendor_get_interface() { buffer_allocator = buffer_allocator_get_interface(); return &interface; }
vendor模块主要是初始化libbt-vendor模块,一些与厂商相关的接口定义。具体的实现是厂商自己的实现,比如打开底层的通信节点,downloaf 卡片的patch等等。
线程的创建在hci_layer.c里面,在hci 模块的start_up函数里面:
static future_t *start_up(void) { LOG_INFO("%s", __func__); ... command_queue = fixed_queue_new(SIZE_MAX);//创建命令队列,用于发送命令 packet_queue = fixed_queue_new(SIZE_MAX);//创建数据队列,用于发送数据 thread = thread_new("hci_thread");//创建hci线程 ... packet_fragmenter->init(&packet_fragmenter_callbacks);//初始化“组装分块”模块 fixed_queue_register_dequeue(command_queue, thread_get_reactor(thread), event_command_ready, NULL);//hci_thread绑定命令队列 fixed_queue_register_dequeue(packet_queue, thread_get_reactor(thread), event_packet_ready, NULL);//hci_thread 绑定数据队列 ... vendor->open(btif_local_bd_addr.address, &interface);//调用vendor模块的open hal->init(&hal_callbacks, thread);//初始化hal模块 ... thread_post(thread, event_finish_startup, NULL);//继续完成hci模块的启动工作,这里主要做的是继续初始化vendor模块 ...
这里主要关注一下队列的绑定,当往command_queue里面塞数据的时候,event_command_ready就会被调用来处理这个数据,注意这里都是在hci_thread 里面执行的。同理往数据队列里面塞数据,event_packet_ready就会被执行。
看代码可以发现,event_command_ready和event_packet_ready 他们都会调用同一个接口来发送数据,packet_fragmenter模块里面的:
packet_fragmenter->fragment_and_dispatch(wait_entry->command);
也就是说,所有的数据都会先进行fragment以及dispatch的过程,我们这里主要关注数据的流向,那么也就是dispatch的流程:
static void fragment_and_dispatch(BT_HDR *packet) { ... callbacks->fragmented(packet, true); }
发现最后是通过回调函数来发送,packet_fragmenter_callbacks_t:,看看其结构:
typedef struct { packet_fragmented_cb fragmented; packet_reassembled_cb reassembled; transmit_finished_cb transmit_finished; } packet_fragmenter_callbacks_t;
static void transmit_fragment(BT_HDR *packet, bool send_transmit_finished) { uint16_t event = packet->event & MSG_EVT_MASK; serial_data_type_t type = event_to_data_type(event); btsnoop->capture(packet, false);//记录btsnoop数据 hal->transmit_data(type, packet->data + packet->offset, packet->len);//调用hal接口发送数据 }
我们继续看hal的相关的接口:
static uint16_t transmit_data(serial_data_type_t type, uint8_t *data, uint16_t length) { ... while (length > 0) { ssize_t ret = write(uart_fd, data + transmitted_length, length); ... return transmitted_length; }
hal层调用的接口很简单,主要就是往hal_open返回的节点描述符写数据,这个数据最终会经过内核抵达硬件设备端。
发送数据的流程就结束了。
这里应该首先分析一下hal_open的流程:该流程是在event_finish_startup函数里执行,是hci_thread线程一开始就执行的函数:
static void event_finish_startup(UNUSED_ATTR void *context) { LOG_INFO("%s", __func__); if(!hal->open()) return; vendor->send_async_command(VENDOR_CONFIGURE_FIRMWARE, NULL); }
static bool hal_open() { int fd_array[CH_MAX]; int number_of_ports = vendor->send_command(VENDOR_OPEN_USERIAL, &fd_array);//通过vendor接口去打开底层的设备节点,存储在fd_array中 uart_fd = fd_array[0]; uart_stream = eager_reader_new(uart_fd, &allocator_malloc, HCI_HAL_SERIAL_BUFFER_SIZE, SIZE_MAX, "hci_single_channel"); eager_reader_register(uart_stream, thread_get_reactor(thread), event_uart_has_bytes, NULL);//hci_thread线程一直poll设备节点,有数据就会调用event_uart_has_bytes来处理 return true; }
现在我们知道,只要底层有数据传上来,那么hal层的函数event_uart_has_bytes就会去处理这些数据,那么看看event_uart_has_bytes的实现:
static void event_uart_has_bytes(eager_reader_t *reader, UNUSED_ATTR void *context) { if (stream_has_interpretation) { callbacks->data_ready(current_data_type);//最终调用该函数 } else { uint8_t type_byte; if (eager_reader_read(reader, &type_byte, 1, true) == 0) { LOG_ERROR("%s could not read HCI message type", __func__); return; } ... stream_has_interpretation = true; current_data_type = type_byte; } }
最终调用:
static const hci_hal_callbacks_t hal_callbacks = { hal_says_data_ready };
这个函数之前有分析过,这里简单介绍其流程:
static void hal_says_data_ready(serial_data_type_t type) { packet_receive_data_t *incoming = &incoming_packets[PACKET_TYPE_TO_INBOUND_INDEX(type)]; uint8_t byte; while (hal->read_data(type, &byte, 1, false) != 0) { switch (incoming->state) { case BRAND_NEW: ... case BODY: incoming->buffer->data[incoming->index] = byte; ... break; case IGNORE: incoming->bytes_remaining--; ... hal->packet_finished(type); return; } break; case FINISHED: LOG_ERROR("%s the state machine should not have been left in the finished state.", __func__); break; } if (incoming->state == FINISHED) { incoming->buffer->len = incoming->index; btsnoop->capture(incoming->buffer, true);//保存btsnoop文件 if (type != DATA_TYPE_EVENT) { packet_fragmenter->reassemble_and_dispatch(incoming->buffer);//acl data处理流程 } else if (!filter_incoming_event(incoming->buffer)) {//event 处理流程 // Dispatch the event by event code uint8_t *stream = incoming->buffer->data; uint8_t event_code; STREAM_TO_UINT8(event_code, stream); data_dispatcher_dispatch( interface.event_dispatcher, event_code, incoming->buffer ); } // We don‘t control the buffer anymore incoming->buffer = NULL; incoming->state = BRAND_NEW; hal->packet_finished(type); // We return after a packet is finished for two reasons: // 1. The type of the next packet could be different. // 2. We don‘t want to hog cpu time. return; } } }
从上面的代码我们发现,主要是经过两个路径来上报数据的:
data_dispatcher_dispatch(interface.event_dispatcher,event_code,incoming->buffer);
首先看一下 第一个路径:
static void reassemble_and_dispatch(UNUSED_ATTR BT_HDR *packet) { ... callbacks->reassembled(packet); }
上面的callback 定义在hci_layer.c
static void dispatch_reassembled(BT_HDR *packet) { ... if (upwards_data_queue) { fixed_queue_enqueue(upwards_data_queue, packet);//把数据放到upwards_data_queue,这个队列其实就是btu_hci_msg_queue } }
这个队列是在bte_main_boot_entry 时候注册的:
标签:分析 保存 allocator and art 节点 创建 mask should
原文地址:https://www.cnblogs.com/libs-liu/p/9218460.html