标签:his cin roc 数据 procs acp -- smp step
/proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间。它以文件系统的方式为内核与进程提供通信的接口。用户和应用程序可以通过/proc得到系统的信息,并可以改变内核的某些参数。由于系统的信息,如进程,是动态改变的,所以用户或应用程序读取/proc目录中的文件时,proc文件系统是动态从系统内核读出所需信息并提交的。
/proc目录中有一些以数字命名的目录,它们是进程目录。系统中当前运行的每一个进程在/proc下都对应一个以进程号为目录名的目录/proc/pid,它们是读取进程信息的接口。此外,在Linux 2.6.0-test6以上的版本中/proc/pid目录中有一个task目录,/proc/pid/task目录中也有一些以该进程所拥有的线程的线程号命名的目录/proc/pid/task/tid,它们是读取线程信息的接口。
该文件中存放了有关 cpu的相关信息(型号,缓存大小等)。
[zhengangen@buick ~]$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 4
model name : Intel(R) Xeon(TM) CPU 3.00GHz
stepping : 10
cpu MHz : 3001.177
cache size : 2048 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe lm pni monitor ds_cpl cid xtpr
bogomips : 6004.52
说明:以下只解释对我们计算Cpu使用率有用的相关参数。
参数 解释
processor (0) cpu的一个物理标识
结论1:可以通过该文件根据processor出现的次数统计cpu的逻辑个数(包括多核、超线程)。
该文件包含了所有CPU活动的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。不同内核版本中该文件的格式可能不大一致,以下通过实例来说明数据该文件中各字段的含义。
实例数据:2.6.24-24版本上的
fjzag@fjzag-desktop:~$ cat /proc/stat
cpu 38082 627 27594 893908 12256 581 895 0 0
cpu0 22880 472 16855 430287 10617 576 661 0 0
cpu1 15202 154 10739 463620 1639 4 234 0 0
intr 120053 222 2686 0 1 1 0 5 0 3 0 0 0 47302 0 0 34194 29775 0 5019 845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ctxt 1434984
btime 1252028243
processes 8113
procs_running 1
procs_blocked 0
第一行的数值表示的是CPU总的使用情况,所以我们只要用第一行的数字计算就可以了。下表解析第一行各数值的含义:
参数 解析(单位:jiffies)
(jiffies是内核中的一个全局变量,用来记录自系统启动一来产生的节拍数,在linux中,一个节拍大致可理解为操作系统进程调度的最小时间片,不同linux内核可能值有不同,通常在1ms到10ms之间)
user (38082) 从系统启动开始累计到当前时刻,处于用户态的运行时间,不包含 nice值为负进程。
nice (627) 从系统启动开始累计到当前时刻,nice值为负的进程所占用的CPU时间
system (27594) 从系统启动开始累计到当前时刻,处于核心态的运行时间
idle (893908) 从系统启动开始累计到当前时刻,除IO等待时间以外的其它等待时间iowait (12256) 从系统启动开始累计到当前时刻,IO等待时间(since 2.5.41)
irq (581) 从系统启动开始累计到当前时刻,硬中断时间(since 2.6.0-test4)
softirq (895) 从系统启动开始累计到当前时刻,软中断时间(since 2.6.0-test4)
stealstolen(0) which is the time spent in other operating systems when running in a virtualized environment(since 2.6.11)
guest(0) which is the time spent running a virtual CPU for guest operating systems under the control of the Linux kernel(since 2.6.24)
结论2:总的cpu时间totalCpuTime = user + nice + system + idle + iowait + irq + softirq + stealstolen + guest
该文件包含了某一进程所有的活动的信息,该文件中的所有值都是从系统启动开始累计
到当前时刻。以下通过实例数据来说明该文件中各字段的含义。
[zhengangen@buick ~]# cat /proc/6873/stat
6873 (a.out) R 6723 6873 6723 34819 6873 8388608 77 0 0 0 41958 31 0 0 25 0 3 0 5882654 1409024 56 4294967295 134512640 134513720 3215579040 0 2097798 0 0 0 0 0 0 0 17 0 0 0
说明:以下只解释对我们计算Cpu使用率有用相关参数
参数 解释
pid=6873 进程号
utime=1587 该任务在用户态运行的时间,单位为jiffies
stime=41958 该任务在核心态运行的时间,单位为jiffies
cutime=0 所有已死线程在用户态运行的时间,单位为jiffies
cstime=0 所有已死在核心态运行的时间,单位为jiffies
结论3:进程的总Cpu时间processCpuTime = utime + stime + cutime + cstime,该值包括其所有线程的cpu时间。
该文件包含了某一进程所有的活动的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。该文件的内容格式以及各字段的含义同/proc/<pid>/stat文件。
注意,该文件中的tid字段表示的不再是进程号,而是linux中的轻量级进程(lwp),即我们通常所说的线程。
结论4:线程Cpu时间threadCpuTime = utime + stime
通过ps命令可以查看系统中相关进程的Cpu使用率的信息。以下在linux man文档中对ps命令输出中有关cpu使用率的解释:
CPU usage is currently expressed as the percentage of time spent running during the entire lifetime of a process. This is not ideal, and it does not conform to the standards that ps otherwise conforms to. CPU usage is unlikely to add up to exactly 100%.
%cpu cpu utilization of the process in "##.#" format. It is the CPU time used divided by the time the process has been running (cputime/realtime ratio), expressed as a percentage. It will not add up to 100% unless you are lucky.
结论5:ps命令算出来的cpu使用率相对于进程启动时的平均值,随着进程运行时间的增大,该值会趋向于平缓。
通过top命令可以查看系统中相关进程的实时信息(cpu使用率等)。以下是man文档中对top命令输出中有关进程cpu使用率的解释。
#C -- Last used CPU (SMP) A number representing the last used processor. In a true SMP environment this will likely change frequently since the kernel intentionally uses weak affinity. Also, the very act of running top may break this weak affinity and cause more processes to change CPUs more often (because of the extra demand for cpu time).
%CPU -- CPU usage The task’s share of the elapsed CPU time since the last screen update, expressed as a percent-age of total CPU time. In a true SMP environment, if Irix mode is Off, top will operate in Solaris mode where a task’s cpu usage will be divided by the total number of CPUs.
结论6:某一个线程在其运行期间其所使用的cpu可能会发生变化。
结论7:在多核的情况下top命令输出的cpu使用率实质是按cpu个数*100%计算的。
通过读取/proc/stat 、/proc/<pid>/stat、/proc/<pid>/task/<tid>/stat以及/proc/cpuinfo这几个文件获取总的Cpu时间、进程的Cpu时间、线程的Cpu时间以及Cpu的个数的信息,然后通过一定的算法进行计算(采样两个足够短的时间间隔的Cpu快照与进程快照来计算进程的Cpu使用率)。
1、 采样两个足够短的时间间隔的Cpu快照,分别记作t1,t2,其中t1、t2的结构均为:
(user、nice、system、idle、iowait、irq、softirq、stealstolen、guest)的9元组;
2、 计算总的Cpu时间片totalCpuTime
a) 把第一次的所有cpu使用情况求和,得到s1;
b) 把第二次的所有cpu使用情况求和,得到s2;
c) s2 - s1得到这个时间间隔内的所有时间片,即totalCpuTime = j2 - j1 ;
3、计算空闲时间idle
idle对应第四列的数据,用第二次的第四列 - 第一次的第四列即可
idle=第二次的第四列 - 第一次的第四列
6、计算cpu使用率
pcpu =100* (total-idle)/total
1. 采样两个足够短的时间间隔的cpu快照与进程快照,
a) 每一个cpu快照均为(user、nice、system、idle、iowait、irq、softirq、stealstolen、guest)的9元组;
b) 每一个进程快照均为 (utime、stime、cutime、cstime)的4元组;
2. 分别根据结论2、结论3计算出两个时刻的总的cpu时间与进程的cpu时间,分别记作:totalCpuTime1、totalCpuTime2、processCpuTime1、processCpuTime2
3. 计算该进程的cpu使用率pcpu = 100*( processCpuTime2 – processCpuTime1) / (totalCpuTime2 – totalCpuTime1) (按100%计算,如果是多核情况下还需乘以cpu的个数);
实验一: 监控一空循环的进程的cpu使用率。 |
|
说明:左边的数据是按以上算法得到的数据,其中采样的时间间隔与top命令刷新屏幕的时间间隔相同。 |
|
按以上方法计算得到的cpu使用率 |
通过top命令得到的 |
99.50083 98.333336 98.0 98.83138 99.0 99.0 99.83361 98.83527 98.4975
|
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 7639 fjzag 20 0 206m 10m 7136 S 99 2.2 1:00.74 java 7639 fjzag 20 0 206m 10m 7136 S 99 2.2 1:03.71 java 7639 fjzag 20 0 206m 10m 7136 S 99 2.2 1:06.67 java 7639 fjzag 20 0 206m 10m 7136 S 99 2.2 1:09.63 java 7639 fjzag 20 0 206m 10m 7136 S 98 2.2 1:12.59 java 7639 fjzag 20 0 206m 10m 7136 S 99 2.2 1:15.55 java 7639 fjzag 20 0 206m 10m 7136 S 100 2.2 1:18.55 java 7639 fjzag 20 0 206m 10m 7136 S 100 2.2 1:21.54 java 7639 fjzag 20 0 206m 10m 7136 S 99 2.2 1:24.52 java 7639 fjzag 20 0 206m 10m 7136 S 98 2.2 1:27.46 java |
实验二: 监控jconsole进程的cpu使用率。 |
|
说明:左边的数据是按以上算法得到的数据,其中采样的时间间隔与top命令刷新屏幕的时间间隔相同。 |
|
按以上方法计算得到的cpu使用率 |
通过top命令得到的 |
8.681135 12.0 10.350584 7.6539097 7.6539097 5.0 13.021703 11.0 8.666667 |
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 7753 fjzag 20 0 252m 72m 22m S 10 14.4 0:18.70 jconsole 7753 fjzag 20 0 252m 72m 22m S 12 14.4 0:19.07 jconsole 7753 fjzag 20 0 252m 72m 22m S 11 14.4 0:19.39 jconsole 7753 fjzag 20 0 252m 72m 22m S 7 14.4 0:19.61 jconsole 7753 fjzag 20 0 252m 72m 22m S 7 14.4 0:19.83 jconsole 7753 fjzag 20 0 252m 72m 22m S 5 14.4 0:19.97 jconsole 7753 fjzag 20 0 252m 72m 22m S 14 14.4 0:20.38 jconsole 7753 fjzag 20 0 252m 72m 22m S 10 14.4 0:20.68 jconsole 7753 fjzag 20 0 252m 72m 22m S 9 14.5 0:20.96 jconsole |
1. 采样两个足够短的时间隔的cpu快照与线程快照,
a) 每一个cpu快照均为(user、nice、system、idle、iowait、irq、softirq、stealstealon、guest)的9元组;
b) 每一个线程快照均为 (utime、stime)的2元组;
2. 分别根据结论2、结论4计算出两个时刻的总的cpu时间与线程的cpu时间,分别记作:totalCpuTime1、totalCpuTime2、threadCpuTime1、threadCpuTime2
3. 计算该线程的cpu使用率pcpu = 100*( threadCpuTime2 – threadCpuTime1) / (totalCpuTime2 – totalCpuTime1) (按100%计算,如果是多核情况下还需乘以cpu的个数);
实验一: 监控一空循环的线程的cpu使用率。 |
|
说明:左边的数据是按以上算法得到的数据,其中采样的时间间隔与top命令刷新屏幕的时间间隔相同。 |
|
按以上方法计算得到的cpu使用率 |
通过top命令得到的 |
98.83138 97.00997 96.98997 97.49583 98.169716 96.8386 97.333336 93.82304 98.66667 |
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 7649 fjzag 20 0 206m 10m 7136 R 97 2.2 7:22.94 java 7649 fjzag 20 0 206m 10m 7136 R 97 2.2 7:25.86 java 7649 fjzag 20 0 206m 10m 7136 R 97 2.2 7:28.76 java 7649 fjzag 20 0 206m 10m 7136 R 99 2.2 7:31.72 java 7649 fjzag 20 0 206m 10m 7136 R 98 2.2 7:34.65 java 7649 fjzag 20 0 206m 10m 7136 R 96 2.2 7:37.53 java 7649 fjzag 20 0 206m 10m 7136 R 98 2.2 7:40.47 java 7649 fjzag 20 0 206m 10m 7136 R 96 2.2 7:43.34 java 7649 fjzag 20 0 206m 10m 7136 R 97 2.2 7:46.25 java |
实验二: 监控jconsole程序某一线程的cpu使用率。 |
|
说明:左边的数据是按以上算法得到的数据,其中采样的时间间隔与top命令刷新屏幕的时间间隔相同。 |
|
按以上方法计算得到的cpu使用率 |
通过top命令得到的 |
1.3400335 6.644518 1.3333334 0.6677796 0.6666667 1.3333334 1.3333334 |
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 7755 fjzag 20 0 251m 72m 22m S 1 14.4 0:11.92 jconsole 7755 fjzag 20 0 251m 72m 22m S 7 14.4 0:12.12 jconsole 7755 fjzag 20 0 251m 72m 22m S 2 14.4 0:12.18 jconsole 7755 fjzag 20 0 251m 72m 22m S 0 14.4 0:12.18 jconsole 7755 fjzag 20 0 251m 72m 22m S 1 14.4 0:12.20 jconsole 7755 fjzag 20 0 251m 72m 22m S 1 14.4 0:12.24 jconsole 7755 fjzag 20 0 251m 72m 22m S 1 14.4 0:12.28 jconsole |
以下通过实验数据来说明多核情况下某一进程cpu使用率是按cpu个数*100%计算的.
在双核的情况下作的一组实验,第一组数据是通过ps -eLo pid,lwp,pcpu | grep 9140命令查看进程号为9140的进程中各线程的详细信息。第二组数据是通过 ps命令查看进程号为9140进程的cpu使用率。
pid lwp %cpu
9140 9140 0.0
9140 9141 0.0
9140 9142 0.0
9140 9143 0.0
9140 9144 0.0
9140 9149 0.0
9140 9150 0.0
9140 9151 0.0
9140 9152 0.1
9140 9153 96.6 该线程是一个空循环
9140 9154 95.9 该线程是一个空循环
以上除了红色标注出来的两个线程以外,其他的线程都是后台线程。
pid %cpu
9140 193
在单核的情况下作的一组实验,第一组数据是通过ps -eLo pid,lwp,pcpu | grep 6137命令查看进程号为6137的进程中各线程的详细信息。第二组数据是通过 ps命令查看进程号为6137进程的cpu使用率。
pid lwp %cpu
6137 6137 0.0
6137 6138 0.1
6137 6143 0.0
6137 6144 0.0
6137 6145 0.0
6137 6146 0.0
6137 6147 0.0
6137 6148 0.0
6137 6149 0.0
6137 6150 46.9 空循环线程
6137 6151 46.9 空循环线程
以上除了红色标注出来的两个线程以外,其他的线程都是后台线程。
pid %cpu
6137 92.9
各个版本都有的4个字段: user、nice、system、idle
2.5.41版本新增字段:iowait
2.6.0-test4新增字段:irq、softirq
2.6.11新增字段:stealstolen : which is the time spent in other operating
systems when running in a virtualized environment
2.6.24新增字段:guest: which is the time spent running a virtual CPU for guest operating systems under the control of the Linux kernel
2./proc/pid/task目录是Linux 2.6.0-test6之后才有的功能。
3.关于出现cpu使用率为负的情况,目前想到的解决方案是如果出现负值,连续采样计算cpu使用率直到为非负。
4. 有些线程生命周期较短,可能在我们采样期间就已经死掉了.
转自:http://www.blogjava.net/fjzag/articles/317773.html
标签:his cin roc 数据 procs acp -- smp step
原文地址:https://www.cnblogs.com/liushui-sky/p/9236007.html