标签:开始 tor lis 年龄 情况 bsp tin hat discuss
问题描述:
Some people will make friend requests. The list of their ages is given and ages[i]
is the age of the ith person.
Person A will NOT friend request person B (B != A) if any of the following conditions are true:
age[B] <= 0.5 * age[A] + 7
age[B] > age[A]
age[B] > 100 && age[A] < 100
Otherwise, A will friend request B.
Note that if A requests B, B does not necessarily request A. Also, people will not friend request themselves.
How many total friend requests are made?
Example 1:
Input: [16,16] Output: 2 Explanation: 2 people friend request each other.
Example 2:
Input: [16,17,18] Output: 2 Explanation: Friend requests are made 17 -> 16, 18 -> 17.
Example 3:
Input: [20,30,100,110,120] Output: Explanation: Friend requests are made 110 -> 100, 120 -> 110, 120 -> 100.
Notes:
1 <= ages.length <= 20000
.1 <= ages[i] <= 120
.
解题思路:
一开始想到的是暴力破解法:即O(n2)的方法,但是显然OJ是不会让你过的:)
这里参考了votrubac 的解法
只能说我没有好好分析题意
遇见这种不等式没能去化简
由条件一: age[B] <= 0.5 * age[A] + 7
和条件二: age[B] > age[A]
可得 age[A] < 0.5 * age[A] + 7
即 age[A] < 14
当年龄小于14时,是不可以发出好友请求的。
由于题目限定: 1 <= ages[i] <= 120
.
我们可以将每个年龄出现的个数存入一个固定大小的数组(这将花费我们O(n)的时间)
而由于遍历固定大小的数组的时间是一定的,实际上是O(1)
根据我们上面得出的条件:
我们将从年龄为15的开始向后遍历
对当前年龄,我们又可以分为两种情况:
1. 同龄人:cnt[i] * (cnt[i] - 1)
2. 比TA小且满足要求的人:由j = 0.5 * i + 8开始向后遍历,且j < i
代码:
class Solution { public: int numFriendRequests(vector<int>& ages) { int cnt[121] = {}; int ret = 0; for(int a : ages){ cnt[a]++; } for(int i = 15; i < 121; i++){ if(cnt[i] == 0) continue; ret += cnt[i] * (cnt[i]-1); for(int j = 0.5 * i + 8; j < i; j++) ret += cnt[j]*cnt[i]; } return ret; } };
825. Friends Of Appropriate Ages
标签:开始 tor lis 年龄 情况 bsp tin hat discuss
原文地址:https://www.cnblogs.com/yaoyudadudu/p/9275969.html