标签:osi 遍历 one 变量 自己的 span 全局最优 exp 根据
Given an integer array nums
, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
暴力解法应该会超时吧,直接考虑用动态规划。用dp[i]来存储以nums[i]为结尾的数组的子序列的最大乘积。有一个问题是根据dp[i-1]求dp[i]时,需要判断nums[i]对全局的影响。因为符号对乘法的影响会使结果不能作为局部最优解,但仍然保留着成为全局最优解的可能。所以同时需要用两个变量存储当前最大的正数乘积,以及最小的负数乘积。当遍历到nums[i]时需要同时更新dp[i],maxPositive以及minNegative。具体的递推是,更新maxPositive,minNegative,之后dp[i]取dp[i-1]和maxPositive中的最大值。更新最大正乘积以及最小负乘积时要记得考虑只有元素自己的情况,并且要分别独立更新。当然本题不需要存储dp[0] ~ dp[i-1],因为dp[i]严格的只和dp[i-1]有关,所以只需要一个dp来存储上一个位置即可,空间可以优化成常数。
Java
class Solution { public int maxProduct(int[] nums) { if (nums == null || nums.length == 0) return 0; int maxP = nums[0], minN = nums[0], dp = nums[0]; for (int i = 1; i < nums.length; i++) { int locMax = nums[i] * maxP, locMin = nums[i] * minN; maxP = Math.max(nums[i], Math.max(locMax, locMin)); minN = Math.min(nums[i], Math.min(locMax, locMin)); dp = Math.max(dp, maxP); } return dp; } }
(Java) LeetCode 152. Maximum Product Subarray —— 乘积最大子序列
标签:osi 遍历 one 变量 自己的 span 全局最优 exp 根据
原文地址:https://www.cnblogs.com/tengdai/p/9281299.html