码迷,mamicode.com
首页 > 编程语言 > 详细

解析Java分布式系统中的缓存架构(上)

时间:2018-07-09 12:47:17      阅读:222      评论:0      收藏:0      [点我收藏+]

标签:集中   最大   集成   支持   可用性   利用   启动   16px   相关   

作者 陈彩华
文章转载交流请联系 caison@aliyun.com

本文主要介绍大型分布式系统中缓存的相关理论,常见的缓存组件以及应用场景。

1 缓存概述

技术分享图片

2 缓存的分类

缓存主要分为以下四类

技术分享图片

2.1 CDN缓存

基本介绍

CDN(Content Delivery Network 内容分发网络)的基本原理是广泛采用各种缓存服务器,将这些缓存服务器分布到用户访问相对集中的地区或网络中,在用户访问网站时,利用全局负载技术将用户的访问指向距离最近的工作正常的缓存服务器上,由缓存服务器直接响应用户请求

应用场景

主要缓存静态资源,例如图片,视频

应用图

技术分享图片
技术分享图片

优点

技术分享图片

2.2 反向代理缓存

基本介绍

反向代理位于应用服务器机房,处理所有对WEB服务器的请求。 如果用户请求的页面在代理服务器上有缓冲的话,代理服务器直接将缓冲内容发送给用户。如果没有缓冲则先向WEB服务器发出请求,取回数据,本地缓存后再发送给用户。通过降低向WEB服务器的请求数,从而降低了WEB服务器的负载。

应用场景

一般只缓存体积较小静态文件资源,如css、js、图片

应用图

技术分享图片

开源实现

技术分享图片

2.3 本地应用缓存

基本介绍

指的是在应用中的缓存组件,其最大的优点是应用和cache是在同一个进程内部,请求缓存非常快速,没有过多的网络开销等,在单应用不需要集群支持或者集群情况下各节点无需互相通知的场景下使用本地缓存较合适; 同时,它的缺点也是应为缓存跟应用程序耦合,多个应用程序无法直接的共享缓存,各应用或集群的各节点都需要维护自己的单独缓存,对内存是一种浪费。

应用场景

缓存字典等常用数据

缓存介质

技术分享图片

实现

编程直接实现

技术分享图片

EHCACHE

基本介绍

Ehcache是??一种基于标准的开源缓存,可提高性能,卸载数据库并简化可伸缩性。 它是使用最广泛的基于Java的缓存,因为它功能强大,经过验证,功能齐全,并与其他流行的库和框架集成。Ehcache可以从进程内缓存扩展到使用TB级缓存的混合进程内/进程外部署

应用场景

技术分享图片

EHCACHE架构图

技术分享图片

EHCACHE主要特征

技术分享图片

EHCACHE缓存数据过期策略

技术分享图片

EHCACHE过期数据淘汰机制

懒淘汰机制:每次往缓存放入数据的时候,都会存一个时间,在读取的时候要和设置的时间做TTL比较来判断是否过期

GUAVA CACHE

2.4 分布式缓存

基本介绍

Guava Cache是Google开源的Java重用工具集库Guava里的一款缓存工具

特点与功能

技术分享图片

应用场景

技术分享图片

数据结构图

技术分享图片
技术分享图片

缓存更新策略

技术分享图片

缓存回收策略

技术分享图片

2.4 分布式缓存

指的是与应用分离的缓存组件或服务,其最大的优点是自身就是一个独立的应用,与本地应用隔离,多个应用可直接的共享缓存。

主要应用场景

技术分享图片

主要接入方式

技术分享图片

下面介绍分布式缓存常见的2大开源实现Memcached和Redis

Memcached

基本介绍

Memcached是一个高性能,分布式内存对象缓存系统,通过在内存里维护一个统一的巨大的hash表,它能够用来存储各种格式的数据,包括图像、视频、文件以及数据库检索的结果等。简单的说就是将数据调用到内存中,然后从内存中读取,从而大大提高读取速度。

特点

技术分享图片

基本架构

技术分享图片

缓存数据过期策略

LRU(最近最少使用)到期失效策略,在Memcached内存储数据项时,可以指定它在缓存的失效时间,默认为永久。当Memcached服务器用完分配的内时,失效的数据被首先替换,然后也是最近未使用的数据。

数据淘汰内部实现

懒淘汰机制:每次往缓存放入数据的时候,都会存一个时间,在读取 的时候要和设置的时间做TTL比较来判断是否过期

分布式集群实现

服务端并没有 “ 分布式 ” 功能。每个服务器都是完全独立和隔离的服务。 Memcached的分布式,是由客户端程序实现的

技术分享图片
技术分享图片

Redis

基本介绍

Redis是一个远程内存数据库(非关系型数据库),性能强劲,具有复制特性以及解决问题而生的独一无二的数据模型。它可以存储键值对与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘,可以使用复制特性来扩展读性能, Redis还可以使用客户端分片来扩展写性能。内置了 复制(replication),LUA脚本(Lua scripting),LRU驱动事件(LRU eviction),事务(transactions) 和不同级别的 磁盘持久化(persistence), 并通过 Redis哨兵(Sentinel)和自动分区(Cluster)提供高可用性(high availability)。

数据模型

技术分享图片

数据淘汰策略

技术分享图片

数据淘汰内部实现

技术分享图片

持久化方式

技术分享图片

底层实现部分解析

图片来自CSDN博主——上帝禁区,如果有哪位神仙知道是用什么画图软件画的欢迎评论,我也很想知道。

  • 启动的部分过程图解

    技术分享图片
  • server端持久化的部分操作图解

    技术分享图片
  • 底层哈希表实现(渐进式Rehash)

初始化字典

技术分享图片

新增字典元素图解

技术分享图片

REHASH执行流程

技术分享图片

缓存设计原则

技术分享图片

Redis与Memcached比较

技术分享图片

解析Java分布式系统中的缓存架构(上)

标签:集中   最大   集成   支持   可用性   利用   启动   16px   相关   

原文地址:https://www.cnblogs.com/yuxiang1/p/9282952.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!