标签:方式 future 时间 queue 控制 print 通知 this 死锁
#多线程
#环境
#- xubuntu 16.04
#- anaconda
#- pycharm
#- python 3.6
#多线程和多进程
#- 程序:一堆代码以文本的形式存入一个文档
#- 进程:程序运行的一个状态
#- 包含地址空间,内存,数据线等
#- 每个进程由自己完全独立的运行环境,多进程共享数据是一个问题
#- 线程
#- 一个进程的独立运行片段,一个进程可以由多个线程
#- 轻量化的进程
#- 一个进程的多个现场间共享数据和上下文运行环境
#- 共享互斥问题
#全局解释器锁(GIL)
#- Python代码的执行是由python虚拟机进行控制
#- 在主循环中只能有一个控制线程在执行
#Python 包
#- thread:有问题,不好用,Python 3改成_thread
#- threading: 目前用的包
#- 利用 time函数,生成两个函数,顺序调用,计算运行时间
# import time
#
#
# def loop1():
# #ctime 得到当前时间
# print(‘Start loop 1 at:‘,time.ctime())
# time.sleep(4)
# print(‘End loop 1 at:‘, time.ctime())
#
#
# def loop2():
# # ctime 得到当前时间
# print(‘Start loop 2 at:‘, time.ctime())
# time.sleep(2)
# print(‘End loop 2 at:‘, time.ctime())
#
# def main():
# print(‘Starting at:‘,time.ctime())
# loop1()
# loop2()
# print(‘all done at:‘, time.ctime())
#
# if __name__ == ‘__main__‘:
# main()
#threading 的使用
#- 直接利用threading.Tread(target=xxx,argx= (xxx,))
#- t.start():启动多线程 eg4
#- t.join):等待多线程执行完成 eg5
#- 守护线程-daemo
#- 如果在程序中将子线程设置成守护线程,则子线程会在主线程结束的时候自动退出
#- 一般认为,守护线程不重要或不允许离开主线程独立运行
#- eg6 and eg7
#- 线程常用属性
# - threading.currentThread:返回当前线程变量
# - threading.enumerate:返回一个包含正在运行的线程list,正在运行的线程是指线程启动后,结束前的线程
# - threading.activeCount:返回正在运行的线程数量,效果跟len(threading.enumerate)相同
# - thr.setName:给线程设置名字
# - thr.getName:得到线程名字
# - eg8
# - 直接继承自threading.Thread
# - 直接继承
# - 重写润函数
# - 类实例就可以直接运行了
# eg9
# eg10 工业风实例
# - 共享变量
# - 共享变量: 当多个现成同时访问一个变量的时候,会产生共享变量的问题
# - 案例11
# - 解决变量:锁,信号灯,
# - 锁(Lock):
# - 是一个标志,表示一个线程在占用一些资源
# - 使用方法
# - 上锁
# - 使用共享资源,放心的用
# - 取消锁,释放锁
# - eg12
# - 锁谁: 哪个资源需要多个线程共享,锁哪个
# - 理解锁:锁其实不是锁住谁,而是一个令牌
# - 线程安全问题:
# - 如果一个资源 / 变量,他对于多线程来讲,不用加锁也不会引起任何问题,则称为线程安全
# - 线程不安全变量类型: list, set, dict
# - 线程安全变量类型: queue
# - 生产者消费者问题
# - 一个模型,可以用来搭建消息队列,
# - queue是一个用来存放变量的数据结构,特点是先进先出,内部元素排队,可以理解成一个特殊的list
# - 死锁问题, eg14
# - 锁的等待时间问题, eg5
# - semphore
# - 允许一个资源最多由几个多线程同时使用
# - eg16
# - threading.Timer
# - eg17
# - Timer是利用多线程,在指定时间后启动一个功能
# - 可重入锁
# - 一个锁,可以被一个线程多次申请
# - 主要解决递归调用的时候,需要申请锁的情况
# - 案例18
# 线程替代方案
# - subprocess
# - 完全跳过线程,使用进程
# - 是派生进程的主要替代方案
# - python2.4后引入
# - multiprocessiong
# - 使用threadiing借口派生,使用子进程
# - 允许为多核或者多cpu派生进程,接口跟threading非常相似
# - python2.6后引入
# - concurrent.futures
# - 新的异步执行模块
# - 任务级别的操作
# - python3.2后引入
# 多进程
# - 进程间通讯(InterprocessCommunication, IPC)
# - 进程之间无任何共享状态
# - 进程的创建
# - 直接生成Process实例对象, 案例19
# - 派生子类, 案例20
#
# - 在os中查看pid,ppid以及他们的关系
# - 案例21
# - 生产者消费者模型
# - JoinableQueue
# - 案例22
# - 队列中哨兵的使用, 案例23
# - 哨兵的改进, 案例24
#eg4
# import time
# import threading
#
# def loop1(in1):
# # ctime 得到当前时间
# print(‘Start loop 1 at:‘, time.ctime())
# print("我是参数", in1)
# time.sleep(4)
# print(‘End loop 1 at:‘, time.ctime())
#
# def loop2(in1, in2):
# # ctime 得到当前时间
# print(‘Start loop 2 at:‘, time.ctime())
# print("我是参数", in1, "和参数", in2)
# time.sleep(2)
# print(‘End loop 2 at:‘, time.ctime())
#
# def main():
# print(‘Starting at:‘,time.ctime())
# t1 = threading.Thread(target=loop1, args=("王老大",))
# t1.start()
# t2 = threading.Thread(target=loop2, args=("王大鹏","王晓鹏"))
# t2.start()
# print(‘all done at:‘, time.ctime())
#
# if __name__ == ‘__main__‘:
# main()
# #一定要有while语句
# #因为启动多线程后本程序就作为主线程存在
# #如果主线程执行完毕,则子线程可能也需要终止
# while True:
# time.sleep(10)
#
#eg5
# import time
# import threading
#
# def loop1(in1):
# # ctime 得到当前时间
# print(‘Start loop 1 at:‘, time.ctime())
# print("我是参数", in1)
# time.sleep(4)
# print(‘End loop 1 at:‘, time.ctime())
#
# def loop2(in1, in2):
# # ctime 得到当前时间
# print(‘Start loop 2 at:‘, time.ctime())
# print("我是参数", in1, "和参数", in2)
# time.sleep(2)
# print(‘End loop 2 at:‘, time.ctime())
#
# def main():
# print(‘Starting at:‘,time.ctime())
# t1 = threading.Thread(target=loop1, args=("王老大",))
# t1.start()
# t2 = threading.Thread(target=loop2, args=("王大鹏","王晓鹏"))
# t2.start()
#
# t1.join()
# t2.join()
#
# print(‘all done at:‘, time.ctime())
#
# if __name__ == ‘__main__‘:
# main()
# #一定要有while语句
# #因为启动多线程后本程序就作为主线程存在
# #如果主线程执行完毕,则子线程可能也需要终止
# while True:
# time.sleep(10)
#eg6 无守护线程
# import time
# import threading
#
# def fun():
# print("Start fun")
# time.sleep(2)
# print("end fun")
#
# print("Maub thread")
#
# ti = threading.Thread(target=fun, args=())
# ti.start()
#
# time.sleep(1)
# print("Main thread end")
#eg7 守护线程
# import time
# import threading
#
#
# def fun():
# print("Start fun")
# time.sleep(2)
# print("end fun")#守护线程的存在,使得打印end fun不被执行
#
#
# print("Maub thread")
#
# ti = threading.Thread(target=fun, args=())
#
# ti.setDaemon(True)#守护线程
#
# ti.start()
#
# time.sleep(1)
# print("Main thread end")
#eg8
# import time
# import threading
#
# def loop1():
# print(‘Start loop 1 at:‘,time.ctime())
# time.sleep(6)
# print(‘End loop 1 at:‘, time.ctime())
#
# def loop2():
# print(‘Start loop 2 at:‘,time.ctime())
# time.sleep(1)
# print(‘End loop 2 at:‘, time.ctime())
#
# def loop3():
# print(‘Start loop 3 at:‘,time.ctime())
# time.sleep(5)
# print(‘End loop 3 at:‘, time.ctime())
#
# def main():
# print(‘Starting at:‘,time.ctime())
# #生成threading.Thread实例
# t1 = threading.Thread(target=loop1, args=())
# t1.setName("THR_1")#给子线程设置一个名字
# t1.start()
#
# t2 = threading.Thread(target=loop2, args=())
# t2.setName("THR_2")
# t2.start()
#
# t3 = threading.Thread(target=loop3, args=())
# t3.setName("THR_3")
# t3.start()
# #预期三秒后t2结束
# time.sleep(3)
# #enumerate 得到正在的运行的t1t3
# for thr in threading.enumerate():
# #getName得到名字
# print("现在正在运行的线程名字为:{0}".format(thr.getName()))
#
# print("现在运行的子线程数量为:{0}".format(threading.activeCount()))
#
# print(‘all done at:‘, time.ctime())
#
# if __name__ == ‘__main__‘:
# main()
# #一定要有while语句
# #因为启动多线程后本程序就作为主线程存在
# #如果主线程执行完毕,则子线程可能也需要终止
# while True:
# time.sleep(10)
#eg 9
# import threading
# import time
#
# class MyThread(threading.Thread):
# def __init__(self,arg):
# super(MyThread,self).__init__()
# self.arg = arg
#
# def run(self):
# time.sleep(2)
# print("The args for this class is {0}".format(self.arg))
#
# for i in range(5):
# t = MyThread(i)
# t.start()
# t.join()
#
# print("Main thread is done !!!!!!")
#eg10
# import threading
# from time import sleep, ctime
#
#
# loop = [4,2]
#
# class ThreadFunc():
#
# def __init__(self, name):
# self.name = name
#
# def loop(self, nloop, nsec):
# ‘‘‘
# :param nloop: loop函数的名称
# :param nsec: 系统休眠时间
# :return:
# ‘‘‘
# print(‘Start loop ‘, nloop, ‘at ‘, ctime())
# sleep(nsec)
# print(‘Done loop ‘, nloop, ‘ at ‘, ctime())
#
# def main():
# print("Starting at: ", ctime())
#
# # ThreadFunc("loop").loop 跟一下两个式子相等:
# # t = ThreadFunc("loop")
# # t.loop
# # 以下t1 和 t2的定义方式相等
# t = ThreadFunc("loop")
# t1 = threading.Thread( target = t.loop, args=("LOOP1", 4))
# # 下面这种写法更西方人,工业化一点
# t2 = threading.Thread( target = ThreadFunc(‘loop‘).loop, args=("LOOP2", 2))
#
# # 常见错误写法
# #t1 = threading.Thread(target=ThreadFunc(‘loop‘).loop(100,4))
# #t2 = threading.Thread(target=ThreadFunc(‘loop‘).loop(100,2))
#
# t1.start()
# t2.start()
#
# t1.join( )
# t2.join()
#
#
# print("ALL done at: ", ctime())
#
#
# if __name__ == ‘__main__‘:
# main()
#
#eg11
# import threading
#
# sum = 0
# loopSum = 1000000
#
#
# lock = threading.Lock()
#
#
# def myAdd():
# global sum, loopSum
#
# for i in range(1, loopSum):
# # 上锁,申请锁
# lock.acquire()
# sum += 1
# # 释放锁
# lock.release()
#
#
# def myMinu():
# global sum, loopSum
# for i in range(1, loopSum):
# lock.acquire()
# sum -= 1
# lock.release()
#
# if __name__ == ‘__main__‘:
# print("Starting ....{0}".format(sum))
#
# # 开始多线程的实例,看执行结果是否一样
# t1 = threading.Thread(target=myAdd, args=())
# t2 = threading.Thread(target=myMinu, args=())
#
# t1.start()
# t2.start()
#
# t1.join()
# t2.join()
#
# print("Done .... {0}".format(sum))
#eg12
# import threading
#
# sum = 0
# loopSum = 1000000
#
#
# lock = threading.Lock()
#
#
# def myAdd():
# global sum, loopSum
#
# for i in range(1, loopSum):
# # 上锁,申请锁
# lock.acquire()
# sum += 1
# # 释放锁
# lock.release()
#
#
# def myMinu():
# global sum, loopSum
# for i in range(1, loopSum):
# lock.acquire()
# sum -= 1
# lock.release()
#
# if __name__ == ‘__main__‘:
# print("Starting ....{0}".format(sum))
#
# # 开始多线程的实例,看执行结果是否一样
# t1 = threading.Thread(target=myAdd, args=())
# t2 = threading.Thread(target=myMinu, args=())
#
# t1.start()
# t2.start()
#
# t1.join()
# t2.join()
#
# print("Done .... {0}".format(sum))
# eg13
#
# #encoding=utf-8
# import threading
# import time
#
# # Python2
# # from Queue import Queue
#
# # Python3
# import queue
#
#
# class Producer(threading.Thread):
# def run(self):
# global queue
# count = 0
# while True:
# # qsize返回queue内容长度
# if queue.qsize() < 1000:
# for i in range(100):
# count = count +1
# msg = ‘生成产品‘+str(count)
# # put是网queue中放入一个值
# queue.put(msg)
# print(msg)
# time.sleep(0.5)
#
#
# class Consumer(threading.Thread):
# def run(self):
# global queue
# while True:
# if queue.qsize() > 100:
# for i in range(3):
# # get是从queue中取出一个值
# msg = self.name + ‘消费了 ‘+queue.get()
# print(msg)
# time.sleep(1)
#
#
# if __name__ == ‘__main__‘:
# queue = queue.Queue()
#
# for i in range(500):
# queue.put(‘初始产品‘+str(i))
# for i in range(2):
# p = Producer()
# p.start()
# for i in range(5):
# c = Consumer()
# c.start()
# eg14
# import threading
# import time
#
# lock_1 = threading.Lock()
# lock_2 = threading.Lock()
#
#
#
#
# def func_1():
# print("func_1 starting.........")
# lock_1.acquire()
# print("func_1 申请了 lock_1....")
# time.sleep(2)
# print("func_1 等待 lock_2.......")
# lock_2.acquire()
# print("func_1 申请了 lock_2.......")
#
# lock_2.release()
# print("func_1 释放了 lock_2")
#
# lock_1.release()
# print("func_1 释放了 lock_1")
#
# print("func_1 done..........")
#
#
# def func_2():
# print("func_2 starting.........")
# lock_2.acquire()
# print("func_2 申请了 lock_2....")
# time.sleep(4)
# print("func_2 等待 lock_1.......")
# lock_1.acquire()
# print("func_2 申请了 lock_1.......")
#
# lock_1.release()
# print("func_2 释放了 lock_1")
#
# lock_2.release()
# print("func_2 释放了 lock_2")
#
# print("func_2 done..........")
#
# if __name__ == "__main__":
#
# print("主程序启动..............")
# t1 = threading.Thread(target=func_1, args=())
# t2 = threading.Thread(target=func_2, args=())
#
# t1.start()
# t2.start()
#
# t1.join()
# t2.join()
#
# print("主程序启动..............")
# eg15
# import threading
# import time
#
# lock_1 = threading.Lock()
# lock_2 = threading.Lock()
#
# def func_1():
# print("func_1 starting.........")
# lock_1.acquire(timeout=4)
# print("func_1 申请了 lock_1....")
# time.sleep(2)
# print("func_1 等待 lock_2.......")
#
# rst = lock_2.acquire(timeout=2)
# if rst:
# print("func_1 已经得到锁 lock_2")
# lock_2.release()
# print("func_1 释放了锁 lock_2")
# else:
# print("func_1 注定没申请到lock_2.....")
#
# lock_1.release()
# print("func_1 释放了 lock_1")
#
# print("func_1 done..........")
#
#
# def func_2():
# print("func_2 starting.........")
# lock_2.acquire()
# print("func_2 申请了 lock_2....")
# time.sleep(4)
# print("func_2 等待 lock_1.......")
# lock_1.acquire()
# print("func_2 申请了 lock_1.......")
#
# lock_1.release()
# print("func_2 释放了 lock_1")
#
# lock_2.release()
# print("func_2 释放了 lock_2")
#
# print("func_2 done..........")
#
# if __name__ == "__main__":
#
# print("主程序启动..............")
# t1 = threading.Thread(target=func_1, args=())
# t2 = threading.Thread(target=func_2, args=())
#
# t1.start()
# t2.start()
#
# t1.join()
# t2.join()
#
# print("主程序结束..............")
# eg16
# import threading
# import time
#
# # 参数定义最多几个线程同时使用资源
# semaphore = threading.Semaphore(3)
#
# def func():
# if semaphore.acquire():
# for i in range(5):
# print(threading.currentThread().getName() + ‘ get semaphore‘)
# time.sleep(15)
# semaphore.release()
# print(threading.currentThread().getName() + ‘ release semaphore‘)
#
#
# for i in range(8):
# t1 = threading.Thread(target=func)
# t1.start()
# eg17
# import threading
# import time
#
# def func():
# print("I am running.........")
# time.sleep(4)
# print("I am done......")
#
#
#
# if __name__ == "__main__":
# t = threading.Timer(6, func)
# t.start()
#
# i = 0
# while True:
# print("{0}***************".format(i))
# time.sleep(3)
# i += 1
#
#
# eg18
#
# import threading
# import time
#
# class MyThread(threading.Thread):
# def run(self):
# global num
# time.sleep(1)
#
# if mutex.acquire(1):
# num = num+1
# msg = self.name+‘ set num to ‘+str(num)
# print(msg)
# mutex.acquire()
# mutex.release()
# mutex.release()
#
# num = 0
#
# mutex = threading.RLock()
#
#
# def testTh():
# for i in range(5):
# t = MyThread()
# t.start()
#
#
#
# if __name__ == ‘__main__‘:
# testTh()
#
#
# eg19
# import multiprocessing
# from time import sleep, ctime
#
#
# def clock(interval):
# while True:
# print("The time is %s" % ctime())
# sleep(interval)
#
#
#
# if __name__ == ‘__main__‘:
# p = multiprocessing.Process(target = clock, args = (5,))
# p.start()
#
# while True:
# print(‘sleeping.......‘)
# sleep(1)
#
#
#
# eg20
# import multiprocessing
# from time import sleep, ctime
#
#
# class ClockProcess(multiprocessing.Process):
# ‘‘‘
# 两个函数比较重要
# 1. init构造函数
# 2. run
# ‘‘‘
#
# def __init__(self, interval):
# super().__init__()
# self.interval = interval
#
# def run(self):
# while True:
# print("The time is %s" % ctime())
# sleep(self.interval)
#
#
# if __name__ == ‘__main__‘:
# p = ClockProcess(3)
# p.start()
#
# while True:
# print(‘sleeping.......‘)
# sleep(1)
#
#
#
# eg21
# from multiprocessing import Process
# import os
#
#
# def info(title):
# print(title)
# print(‘module name:‘, __name__)
# # 得到父亲进程的id
# print(‘parent process:‘, os.getppid())
# # 得到本身进程的id
# print(‘process id:‘, os.getpid())
#
#
# def f(name):
# info(‘function f‘)
# print(‘hello‘, name)
#
#
# if __name__ == ‘__main__‘:
# info(‘main line‘)
# p = Process(target=f, args=(‘bob‘,))
# p.start()
# p.join()
#
#
# eg22
# import multiprocessing
# from time import ctime
#
#
# def consumer(input_q):
# print("Into consumer:", ctime())
# while True:
# # 处理项
# item = input_q.get()
# print ("pull", item, "out of q") # 此处替换为有用的工作
# input_q.task_done() # 发出信号通知任务完成
# print ("Out of consumer:", ctime()) ##此句未执行,因为q.join()收集到四个task_done()信号后,主进程启动,未等到print此句完成,程序就结束了
#
#
# def producer(sequence, output_q):
# print ("Into procuder:", ctime())
# for item in sequence:
# output_q.put(item)
# print ("put", item, "into q")
# print ("Out of procuder:", ctime())
#
#
#
# # 建立进程
# if __name__ == ‘__main__‘:
# q = multiprocessing.JoinableQueue()
# # 运行消费者进程
# cons_p = multiprocessing.Process (target = consumer, args = (q,))
# cons_p.daemon = True
# cons_p.start()
#
# # 生产多个项,sequence代表要发送给消费者的项序列
# # 在实践中,这可能是生成器的输出或通过一些其他方式生产出来
# sequence = [1,2,3,4]
# producer(sequence, q)
# # 等待所有项被处理
# q.join()
#
# eg23
# import multiprocessing
# from time import ctime
#
# # 设置哨兵问题
# def consumer(input_q):
# print("Into consumer:", ctime())
# while True:
# item = input_q.get()
# if item is None:
# break
# print("pull", item, "out of q")
# print ("Out of consumer:", ctime()) ## 此句执行完成,再转入主进程
#
#
# def producer(sequence, output_q):
# print ("Into procuder:", ctime())
# for item in sequence:
# output_q.put(item)
# print ("put", item, "into q")
# print ("Out of procuder:", ctime())
#
# if __name__ == ‘__main__‘:
# q = multiprocessing.Queue()
# cons_p = multiprocessing.Process(target = consumer, args = (q,))
# cons_p.start()
#
# sequence = [1,2,3,4]
# producer(sequence, q)
#
# q.put(None)
# cons_p.join()
#
#
# eg24
#
# import multiprocessing
# from time import ctime
#
# def consumer(input_q):
# print ("Into consumer:", ctime())
# while True:
# item = input_q.get()
# if item is None:
# break
# print("pull", item, "out of q")
# print ("Out of consumer:", ctime())
#
# def producer(sequence, output_q):
# for item in sequence:
# print ("Into procuder:", ctime())
# output_q.put(item)
# print ("Out of procuder:", ctime())
#
# if __name__ == ‘__main__‘:
# q = multiprocessing.Queue()
# cons_p1 = multiprocessing.Process (target = consumer, args = (q,))
# cons_p1.start()
#
# cons_p2 = multiprocessing.Process (target = consumer, args = (q,))
# cons_p2.start()
#
# sequence = [1,2,3,4]
# producer(sequence, q)
#
# q.put(None)
# q.put(None)
#
# cons_p1.join()
# cons_p2.join()
标签:方式 future 时间 queue 控制 print 通知 this 死锁
原文地址:https://www.cnblogs.com/Gulidon/p/9313512.html