码迷,mamicode.com
首页 > 编程语言 > 详细

python数据分析实战-第10章-ipythonNotebook内嵌JavaScript库D3

时间:2018-07-22 15:10:47      阅读:382      评论:0      收藏:0      [点我收藏+]

标签:otl   das   move   width   内嵌   sele   encoding   col   rop   

第10章 IPython Notebook内嵌JavaScript库D3  252
10.1 开放的人口数据源  252
10.2 JavaScript库D3  255
10.3 绘制簇状条状图  259
10.4 地区分布图  262
10.5 2014年美国人口地区分布图  266
10.6 小结  270

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

# from urllib.request import urlopen
# pop2014 = pd.read_csv(
# urlopen(‘http://www.census.gov/popest/data/counties/totals/2014/files/CO-EST2014-alldata.csv‘),
# encoding=‘latin-1‘,
# dtype={‘STATE‘: ‘str‘, ‘COUNTY‘: ‘str‘}
# )

pop2014 = pd.read_csv(‘CO-EST2014-alldata.csv‘,encoding=‘latin-1‘,dtype={‘STATE‘: ‘str‘, ‘COUNTY‘: ‘str‘})
print(pop2014.shape)
print(pop2014.columns)
(3193, 84)
Index([‘SUMLEV‘, ‘REGION‘, ‘DIVISION‘, ‘STATE‘, ‘COUNTY‘, ‘STNAME‘, ‘CTYNAME‘,
       ‘CENSUS2010POP‘, ‘ESTIMATESBASE2010‘, ‘POPESTIMATE2010‘,
       ‘POPESTIMATE2011‘, ‘POPESTIMATE2012‘, ‘POPESTIMATE2013‘,
       ‘POPESTIMATE2014‘, ‘NPOPCHG_2010‘, ‘NPOPCHG_2011‘, ‘NPOPCHG_2012‘,
       ‘NPOPCHG_2013‘, ‘NPOPCHG_2014‘, ‘BIRTHS2010‘, ‘BIRTHS2011‘,
       ‘BIRTHS2012‘, ‘BIRTHS2013‘, ‘BIRTHS2014‘, ‘DEATHS2010‘, ‘DEATHS2011‘,
       ‘DEATHS2012‘, ‘DEATHS2013‘, ‘DEATHS2014‘, ‘NATURALINC2010‘,
       ‘NATURALINC2011‘, ‘NATURALINC2012‘, ‘NATURALINC2013‘, ‘NATURALINC2014‘,
       ‘INTERNATIONALMIG2010‘, ‘INTERNATIONALMIG2011‘, ‘INTERNATIONALMIG2012‘,
       ‘INTERNATIONALMIG2013‘, ‘INTERNATIONALMIG2014‘, ‘DOMESTICMIG2010‘,
       ‘DOMESTICMIG2011‘, ‘DOMESTICMIG2012‘, ‘DOMESTICMIG2013‘,
       ‘DOMESTICMIG2014‘, ‘NETMIG2010‘, ‘NETMIG2011‘, ‘NETMIG2012‘,
       ‘NETMIG2013‘, ‘NETMIG2014‘, ‘RESIDUAL2010‘, ‘RESIDUAL2011‘,
       ‘RESIDUAL2012‘, ‘RESIDUAL2013‘, ‘RESIDUAL2014‘, ‘GQESTIMATESBASE2010‘,
       ‘GQESTIMATES2010‘, ‘GQESTIMATES2011‘, ‘GQESTIMATES2012‘,
       ‘GQESTIMATES2013‘, ‘GQESTIMATES2014‘, ‘RBIRTH2011‘, ‘RBIRTH2012‘,
       ‘RBIRTH2013‘, ‘RBIRTH2014‘, ‘RDEATH2011‘, ‘RDEATH2012‘, ‘RDEATH2013‘,
       ‘RDEATH2014‘, ‘RNATURALINC2011‘, ‘RNATURALINC2012‘, ‘RNATURALINC2013‘,
       ‘RNATURALINC2014‘, ‘RINTERNATIONALMIG2011‘, ‘RINTERNATIONALMIG2012‘,
       ‘RINTERNATIONALMIG2013‘, ‘RINTERNATIONALMIG2014‘, ‘RDOMESTICMIG2011‘,
       ‘RDOMESTICMIG2012‘, ‘RDOMESTICMIG2013‘, ‘RDOMESTICMIG2014‘,
       ‘RNETMIG2011‘, ‘RNETMIG2012‘, ‘RNETMIG2013‘, ‘RNETMIG2014‘],
      dtype=‘object‘)
1
2
pop2014_by_state = pop2014[pop2014.SUMLEV == 40]
pop2014_by_state.shape
(51, 84)
1
2
states = pop2014_by_state[[‘STNAME‘,‘POPESTIMATE2011‘, ‘POPESTIMATE2012‘, ‘POPESTIMATE2013‘,
‘POPESTIMATE2014‘]]
1
2
temp = states.sort_values([‘POPESTIMATE2014‘], ascending=False)[:5]
print(temp)
          STNAME  POPESTIMATE2011  POPESTIMATE2012  POPESTIMATE2013  190   California         37701901         38062780         38431393   
2566       Texas         25657477         26094422         26505637   
329      Florida         19107900         19355257         19600311   
1860    New York         19521745         19607140         19695680   
608     Illinois         12858725         12873763         12890552   

      POPESTIMATE2014  
190          38802500  
2566         26956958  
329          19893297  
1860         19746227  
608          12880580  
1
2
3
4
5
6
%%javascript
require.config({
paths: {
d3: ‘//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min‘
}
});
<IPython.core.display.Javascript object>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from IPython.core.display import display, Javascript, HTML
display(HTML("""
<style>
.bar {
fill: steelblue;
}
.bar:hover{
fill: brown;
}
.axis {
font: 10px sans-serif;
}
.axis path,
.axis line {
fill: none;
stroke: #000;
}
.x.axis path {
display: none;
}
</style>
<div id="chart_d3" />
"""))

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import jinja2
myTemplate = jinja2.Template("""
require(["d3"], function(d3){
var data = []
{% for row in data %}
data.push({ ‘state‘: ‘{{ row[1] }}‘, ‘population‘: {{ row[5] }} });
{% endfor %}
d3.select("#chart_d3 svg").remove()
var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 800 - margin.left - margin.right,
height = 400 - margin.top - margin.bottom;
var x = d3.scale.ordinal()
.rangeRoundBands([0, width], .25);
var y = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(10)
.tickFormat(d3.format(‘.1s‘));
var svg = d3.select("#chart_d3").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
x.domain(data.map(function(d) { return d.state; }));
y.domain([0, d3.max(data, function(d) { return d.population; })]);
svg.append("g")
.attr("class", "x axis")
.attr("transform", "translate(0," + height + ")")
.call(xAxis);
svg.append("g")
.attr("class", "y axis")
.call(yAxis)
.append("text")
.attr("transform", "rotate(-90)")
.attr("y", 6)
.attr("dy", ".71em")
.style("text-anchor", "end")
.text("Population");
svg.selectAll(".bar")
.data(data)
.enter().append("rect")
.attr("class", "bar")
.attr("x", function(d) { return x(d.state); })
.attr("width", x.rangeBand())
.attr("y", function(d) { return y(d.population); })
.attr("height", function(d) { return height - y(d.population); });
});
""");
1
2
3
display(Javascript(myTemplate.render(
data=states.sort_values([‘POPESTIMATE2012‘], ascending=False)[:10].itertuples()
)))
<IPython.core.display.Javascript object>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
display(HTML("""
<style>
.bar2011 {
fill: steelblue;
}
.bar2012 {
fill: red;
}
.bar2013 {
fill: yellow;
}
.bar2014 {
fill: green;
}
.axis {
font: 10px sans-serif;
}
.axis path,
.axis line {
fill: none;
stroke: #000;
}
.x.axis path {
display: none;
}
</style>
<div id="chart_d3" />
"""))

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import jinja2
myTemplate = jinja2.Template("""
require(["d3"], function(d3){
var data = []
var data2 = []
var data3 = []
var data4 = []
{% for row in data %}
data.push({ ‘state‘: ‘{{ row[1] }}‘, ‘population‘: {{ row[2] }} });
data2.push({ ‘state‘: ‘{{ row[1] }}‘, ‘population‘: {{ row[3] }} });
data3.push({ ‘state‘: ‘{{ row[1] }}‘, ‘population‘: {{ row[4] }} });
data4.push({ ‘state‘: ‘{{ row[1] }}‘, ‘population‘: {{ row[5] }} });
{% endfor %}
d3.select("#chart_d3 svg").remove()
var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 800 - margin.left - margin.right,
height = 400 - margin.top - margin.bottom;
var x = d3.scale.ordinal()
.rangeRoundBands([0, width], .25);
var y = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(10)
.tickFormat(d3.format(‘.1s‘));
var svg = d3.select("#chart_d3").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
x.domain(data.map(function(d) { return d.state; }));
y.domain([0, d3.max(data, function(d) { return d.population; })]);
svg.append("g")
.attr("class", "x axis")
.attr("transform", "translate(0," + height + ")")
.call(xAxis);
svg.append("g")
.attr("class", "y axis")
.call(yAxis)
.append("text")
.attr("transform", "rotate(-90)")
.attr("y", 6)
.attr("dy", ".71em")
.style("text-anchor", "end")
.text("Population");
svg.selectAll(".bar2011")
.data(data)
.enter().append("rect")
.attr("class", "bar2011")
.attr("x", function(d) { return x(d.state); })
.attr("width", x.rangeBand()/4)
.attr("y", function(d) { return y(d.population); })
.attr("height", function(d) { return height - y(d.population); });
svg.selectAll(".bar2012")
.data(data2)
.enter().append("rect")
.attr("class", "bar2012")
.attr("x", function(d) { return (x(d.state)+x.rangeBand()/4); })
.attr("width", x.rangeBand()/4)
.attr("y", function(d) { return y(d.population); })
.attr("height", function(d) { return height - y(d.population); });
svg.selectAll(".bar2013")
.data(data3)
.enter().append("rect")
.attr("class", "bar2013")
.attr("x", function(d) { return (x(d.state)+2*x.rangeBand()/4); })
.attr("width", x.rangeBand()/4)
.attr("y", function(d) { return y(d.population); })
.attr("height", function(d) { return height - y(d.population); });
svg.selectAll(".bar2014")
.data(data4)
.enter().append("rect")
.attr("class", "bar2014")
.attr("x", function(d) { return (x(d.state)+3*x.rangeBand()/4); })
.attr("width", x.rangeBand()/4)
.attr("y", function(d) { return y(d.population); })
.attr("height", function(d) { return height - y(d.population); });
});
""");
1
2
3
display(Javascript(myTemplate.render(
data=states.sort_values([‘POPESTIMATE2014‘], ascending=False)[:5].itertuples()
)))
<IPython.core.display.Javascript object>
1
2
3
4
5
6
7
8
%%javascript
require.config({
paths: {
d3: ‘//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min‘,
queue: ‘//cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/queue.min‘,
topojson: ‘//cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/topojson.min‘
}
});
<IPython.core.display.Javascript object>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from IPython.core.display import display, Javascript, HTML
display(HTML("""
<style>
.counties {
fill: none;
}
.states {
fill: none;
stroke: #fff;
stroke-linejoin: round;
}
.q0-9 { fill:rgb(247,251,255); }
.q1-9 { fill:rgb(222,235,247); }
.q2-9 { fill:rgb(198,219,239); }
.q3-9 { fill:rgb(158,202,225); }
.q4-9 { fill:rgb(107,174,214); }
.q5-9 { fill:rgb(66,146,198); }
.q6-9 { fill:rgb(33,113,181); }
.q7-9 { fill:rgb(8,81,156); }
.q8-9 { fill:rgb(8,48,107); }
</style>
<div id="choropleth" />
"""))

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import jinja2
choropleth = jinja2.Template("""
require(["d3","queue","topojson"], function(d3,queue,topojson){
// var data = []
// {% for row in data %}
// data.push({ ‘state‘: ‘{{ row[1] }}‘, ‘population‘: {{ row[2] }} });
// {% endfor %}
d3.select("#choropleth svg").remove()
var width = 960,
height = 600;
var rateById = d3.map();
ar quantize = d3.scale.quantize()
.domain([0, .15])
.range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));
var projection = d3.geo.albersUsa()
.scale(1280)
.translate([width / 2, height / 2]);
var path = d3.geo.path()
.projection(projection);
//row to modify
var svg = d3.select("#choropleth").append("svg")
.attr("width", width)
.attr("height", height);
queue()
.defer(d3.json, "us.json")
.defer(d3.tsv, "unemployment.tsv", function(d) { rateById.set(d.id, +d.rate); })
.await(ready);
function ready(error, us) {
if (error) throw error;
svg.append("g")
.attr("class", "counties")
.selectAll("path")
.data(topojson.feature(us, us.objects.counties).features)
.enter().append("path")
.attr("class", function(d) { return quantize(rateById.get(d.id)); })
.attr("d", path);
svg.append("path")
.datum(topojson.mesh(us, us.objects.states, function(a, b) { return a !== b; }))
.attr("class", "states")
.attr("d", path);
}
});
""");
1
display(Javascript(choropleth.render()))
<IPython.core.display.Javascript object>
1
2
pop2014_by_county = pop2014[pop2014.SUMLEV == 50]
pop2014_by_county.shape
(3142, 84)
1
2
3
# USJSONnames = pd.read_table(urlopen(‘http://bl.ocks.org/mbostock/raw/4090846/us-countynames.tsv‘))
USJSONnames = pd.read_table(‘world-country-names.tsv‘)
USJSONnames.shape
(252, 2)

python数据分析实战-第10章-ipythonNotebook内嵌JavaScript库D3

标签:otl   das   move   width   内嵌   sele   encoding   col   rop   

原文地址:https://www.cnblogs.com/LearnFromNow/p/9349938.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!