标签:lse title def nump complex apply tle 运算符 基本
第3章 NumPy库 32
3.1 NumPy简史 32
3.2 NumPy安装 32
3.3 ndarray:NumPy库的心脏 33
1
|
a = np.array([1, 2, 3])
|
array([1, 2, 3])
1
|
type(a), a.dtype, a.ndim, a.size, a.shape, a.itemsize
|
(numpy.ndarray, dtype(‘int64‘), 1, 3, (3,), 8)
1
|
b = np.array([[1.3, 2.4],[0.3, 4.1]])
|
array([[1.3, 2.4],
[0.3, 4.1]])
1
|
type(b), b.dtype, b.ndim, b.size, b.shape, b.itemsize
|
(numpy.ndarray, dtype(‘float64‘), 2, 4, (2, 2), 8)
(<memory at 0x7f3df8064558>, memoryview)
3.3.1 创建数组 34
1
|
c = np.array([[1, 2, 3],[4, 5, 6]])
|
array([[1, 2, 3],
[4, 5, 6]])
1
|
d = np.array(((1, 2, 3),(4, 5, 6)))
|
array([[1, 2, 3],
[4, 5, 6]])
1
|
e = np.array([(1, 2, 3), [4, 5, 6], (7, 8, 9)])
|
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
3.3.2 数据类型 34
1
|
g = np.array([[‘a‘, ‘b‘],[‘c‘, ‘d‘]])
|
array([[‘a‘, ‘b‘],
[‘c‘, ‘d‘]], dtype=‘<U1‘)
(dtype(‘<U1‘), ‘str32‘)
3.3.3 dtype选项 35
1
|
f = np.array([[1, 2, 3],[4, 5, 6]], dtype=complex)
|
array([[1.+0.j, 2.+0.j, 3.+0.j],
[4.+0.j, 5.+0.j, 6.+0.j]])
3.3.4 自带的数组创建方法 36
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
array([4, 5, 6, 7, 8, 9])
array([0, 3, 6, 9])
array([0. , 0.6, 1.2, 1.8, 2.4, 3. , 3.6, 4.2, 4.8, 5.4])
1
|
np.arange(0, 12).reshape(3, 4)
|
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
array([ 0. , 2.5, 5. , 7.5, 10. ])
array([0.71423775, 0.62229946, 0.97150108])
1
|
np.random.random((3,3))
|
array([[0.95155686, 0.10092046, 0.35220847],
[0.96635154, 0.33764827, 0.44879963],
[0.40573132, 0.97260092, 0.30105595]])
3.4 基本操作 37
3.4.1 算术运算符 37
array([0, 1, 2, 3])
array([4, 5, 6, 7])
array([0, 2, 4, 6])
array([4, 5, 6, 7])
array([ 4, 6, 8, 10])
array([-4, -4, -4, -4])
array([ 0, 5, 12, 21])
array([-0. , -0.95892427, -0.558831 , 1.9709598 ])
array([0. , 2.23606798, 4.89897949, 7.93725393])
1
|
A = np.arange(0, 9).reshape(3, 3)
|
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
array([[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]])
3.4.2 矩阵积 38
array([[ 3., 3., 3.],
[12., 12., 12.],
[21., 21., 21.]])
array([[ 3., 3., 3.],
[12., 12., 12.],
[21., 21., 21.]])
array([[ 9., 12., 15.],
[ 9., 12., 15.],
[ 9., 12., 15.]])
3.4.3 自增和自减运算符 39
array([0, 1, 2, 3])
array([1, 2, 3, 4])
array([0, 1, 2, 3])
array([4, 5, 6, 7])
array([ 8, 10, 12, 14])
3.4.4 通用函数 40
array([1, 2, 3, 4])
array([1. , 1.41421356, 1.73205081, 2. ])
array([0. , 0.69314718, 1.09861229, 1.38629436])
array([ 0.84147098, 0.90929743, 0.14112001, -0.7568025 ])
3.4.5 聚合函数 40
1
|
a = np.array([3.3, 4.5, 1.2, 5.7, 0.3])
|
array([3.3, 4.5, 1.2, 5.7, 0.3])
15.0
0.3
5.7
3.0
2.0079840636817816
3.5 索引机制、切片和迭代方法 41
3.5.1 索引机制 41
array([10, 11, 12, 13, 14, 15])
(14, 15, 10)
array([11, 13, 14])
1
|
A = np.arange(10, 19).reshape((3, 3))
|
array([[10, 11, 12],
[13, 14, 15],
[16, 17, 18]])
15
3.5.2 切片操作 42
array([10, 11, 12, 13, 14, 15])
array([11, 12, 13, 14])
array([11, 13])
array([10, 12, 14])
array([10, 12, 14])
array([10, 11, 12, 13, 14])
1
|
A = np.arange(10, 19).reshape((3, 3))
|
array([[10, 11, 12],
[13, 14, 15],
[16, 17, 18]])
array([10, 11, 12])
array([10, 13, 16])
array([[10, 11],
[13, 14]])
array([[10, 11],
[16, 17]])
3.5.3 数组迭代 43
10
11
12
13
14
15
1 2
|
for row in A: print(row)
|
[10 11 12]
[13 14 15]
[16 17 18]
1 2
|
for item in A.flat: print(item)
|
10
11
12
13
14
15
16
17
18
1
|
np.apply_along_axis(np.mean, axis=0, arr=A)
|
array([13., 14., 15.])
1
|
np.apply_along_axis(np.mean, axis=1, arr=A)
|
array([11., 14., 17.])
1 2
|
def foo(x): return x/2
|
1
|
np.apply_along_axis(foo, axis=1, arr=A)
|
array([[5. , 5.5, 6. ],
[6.5, 7. , 7.5],
[8. , 8.5, 9. ]])
1
|
np.apply_along_axis(foo, axis=0, arr=A)
|
array([[5. , 5.5, 6. ],
[6.5, 7. , 7.5],
[8. , 8.5, 9. ]])
3.6 条件和布尔数组 45
1
|
A = np.random.random((4, 4))
|
array([[0.92122811, 0.55810739, 0.16604965, 0.98756188],
[0.89990698, 0.45441885, 0.85233406, 0.32187075],
[0.58032546, 0.01878004, 0.91573127, 0.63144651],
[0.52282585, 0.57666091, 0.97865543, 0.54473589]])
array([[False, False, True, False],
[False, True, False, True],
[False, True, False, False],
[False, False, False, False]])
array([0.04869294, 0.07669828, 0.26766679, 0.04023488, 0.10839496,
0.45508628, 0.48141253])
3.7 形状变换 45
1
|
a = np.random.random(12)
|
array([0.93015885, 0.01067508, 0.43200938, 0.24035759, 0.01564892,
0.09507133, 0.70143444, 0.46887118, 0.85551184, 0.61722919,
0.94688342, 0.92520351])
array([[0.93015885, 0.01067508, 0.43200938, 0.24035759],
[0.01564892, 0.09507133, 0.70143444, 0.46887118],
[0.85551184, 0.61722919, 0.94688342, 0.92520351]])
array([[0.93015885, 0.01067508, 0.43200938, 0.24035759],
[0.01564892, 0.09507133, 0.70143444, 0.46887118],
[0.85551184, 0.61722919, 0.94688342, 0.92520351]])
array([0.93015885, 0.01067508, 0.43200938, 0.24035759, 0.01564892,
0.09507133, 0.70143444, 0.46887118, 0.85551184, 0.61722919,
0.94688342, 0.92520351])
array([0.93015885, 0.01067508, 0.43200938, 0.24035759, 0.01564892,
0.09507133, 0.70143444, 0.46887118, 0.85551184, 0.61722919,
0.94688342, 0.92520351])
array([[0.93015885, 0.01564892, 0.85551184],
[0.01067508, 0.09507133, 0.61722919],
[0.43200938, 0.70143444, 0.94688342],
[0.24035759, 0.46887118, 0.92520351]])
3.8 数组操作 46
3.8.1 连接数组 46
1 2
|
A = np.ones((3, 3)) B = np.zeros((3, 3))
|
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
array([[1., 1., 1., 0., 0., 0.],
[1., 1., 1., 0., 0., 0.],
[1., 1., 1., 0., 0., 0.]])
1 2 3
|
a = np.array([0, 1, 2]) b = np.array([3, 4, 5]) c = np.array([6, 7, 8])
|
1
|
np.column_stack((a, b, c))
|
array([[0, 3, 6],
[1, 4, 7],
[2, 5, 8]])
1
|
np.row_stack((a, b, c))
|
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
3.8.2 数组切分 47
1
|
A = np.arange(16).reshape((4, 4))
|
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
1
|
[B,C] = np.hsplit(A, 2)
|
array([[ 0, 1],
[ 4, 5],
[ 8, 9],
[12, 13]])
array([[ 2, 3],
[ 6, 7],
[10, 11],
[14, 15]])
1
|
[B,C] = np.vsplit(A, 2)
|
array([[0, 1, 2, 3],
[4, 5, 6, 7]])
array([[ 8, 9, 10, 11],
[12, 13, 14, 15]])
1
|
[A1,A2,A3] = np.split(A,[1,3],axis=1)
|
array([[ 0],
[ 4],
[ 8],
[12]])
array([[ 1, 2],
[ 5, 6],
[ 9, 10],
[13, 14]])
array([[ 3],
[ 7],
[11],
[15]])
1
|
[A1,A2,A3] = np.split(A,[1,3],axis=0)
|
array([[0, 1, 2, 3]])
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
array([[12, 13, 14, 15]])
3.9 常用概念 49
3.9.1 对象的副本或视图 49
1 2
|
a = np.array([1, 2, 3, 4]) b = a
|
array([1, 2, 3, 4])
array([1, 2, 0, 4])
array([1, 2])
array([0, 2])
1
|
a = np.array([1, 2, 3, 4])
|
array([1, 2, 3, 4])
array([1, 2, 3, 4])
3.9.2 向量化 50
3.9.3 广播机制 50
1
|
A = np.arange(16).reshape(4, 4)
|
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
array([0, 1, 2, 3])
array([[ 0, 2, 4, 6],
[ 4, 6, 8, 10],
[ 8, 10, 12, 14],
[12, 14, 16, 18]])
1
|
m = np.arange(6).reshape(3, 1, 2)
|
1
|
n = np.arange(6).reshape(3, 2, 1)
|
array([[[0, 1]],
[[2, 3]],
[[4, 5]]])
array([[[0],
[1]],
[[2],
[3]],
[[4],
[5]]])
array([[[ 0, 1],
[ 1, 2]],
[[ 4, 5],
[ 5, 6]],
[[ 8, 9],
[ 9, 10]]])
3.10 结构化数组 52
1
|
structured = np.array([(1, ‘First‘, 0.5, 1+2j),(2, ‘Second‘, 1.3, 2-2j), (3, ‘Third‘, 0.8, 1+3j)],dtype=(‘i2, a6, f4, c8‘))
|
array([(1, b‘First‘, 0.5, 1.+2.j), (2, b‘Second‘, 1.3, 2.-2.j),
(3, b‘Third‘, 0.8, 1.+3.j)],
dtype=[(‘f0‘, ‘<i2‘), (‘f1‘, ‘S6‘), (‘f2‘, ‘<f4‘), (‘f3‘, ‘<c8‘)])
1
|
structured = np.array([(1, ‘First‘, 0.5, 1+2j),(2, ‘Second‘, 1.3,2-2j),(3, ‘Third‘, 0.8, 1+3j)],dtype=(‘int16, a6, float32, complex64‘))
|
array([(1, b‘First‘, 0.5, 1.+2.j), (2, b‘Second‘, 1.3, 2.-2.j),
(3, b‘Third‘, 0.8, 1.+3.j)],
dtype=[(‘f0‘, ‘<i2‘), (‘f1‘, ‘S6‘), (‘f2‘, ‘<f4‘), (‘f3‘, ‘<c8‘)])
(2, b‘Second‘, 1.3, 2.-2.j)
array([b‘First‘, b‘Second‘, b‘Third‘], dtype=‘|S6‘)
1
|
structured = np.array([(1,‘First‘,0.5,1+2j),(2,‘Second‘,1.3,2-2j),(3,‘Third‘,0.8,1+3j)],dtype=[(‘id‘,‘i2‘),(‘position‘,‘a6‘),(‘value‘,‘f4‘),(‘complex‘,‘c8‘)])
|
array([(1, b‘First‘, 0.5, 1.+2.j), (2, b‘Second‘, 1.3, 2.-2.j),
(3, b‘Third‘, 0.8, 1.+3.j)],
dtype=[(‘id‘, ‘<i2‘), (‘position‘, ‘S6‘), (‘value‘, ‘<f4‘), (‘complex‘, ‘<c8‘)])
1
|
structured.dtype.names = (‘id‘,‘order‘,‘value‘,‘complex‘)
|
array([b‘First‘, b‘Second‘, b‘Third‘], dtype=‘|S6‘)
3.11 数组数据文件的读写 53
3.11.1 二进制文件的读写 54
1
|
data = np.random.random(16).reshape(4,4)
|
array([[0.87899377, 0.11342252, 0.6682891 , 0.90832539],
[0.33643193, 0.49913359, 0.46395367, 0.38503354],
[0.30343769, 0.74571053, 0.16758969, 0.11507577],
[0.00213888, 0.12661618, 0.71188585, 0.95622255]])
1
|
np.save(‘saved_data‘,data)
|
1
|
loaded_data = np.load(‘saved_data.npy‘)
|
array([[0.87899377, 0.11342252, 0.6682891 , 0.90832539],
[0.33643193, 0.49913359, 0.46395367, 0.38503354],
[0.30343769, 0.74571053, 0.16758969, 0.11507577],
[0.00213888, 0.12661618, 0.71188585, 0.95622255]])
3.11.2 读取文件中的列表形式数据 54
1
|
data = np.genfromtxt(‘data.csv‘, delimiter=‘,‘, names=True)
|
array([(1., 123., 1.4, 23.), (2., 110., 0.5, 18.), (3., 164., 2.1, 19.)],
dtype=[(‘id‘, ‘<f8‘), (‘value1‘, ‘<f8‘), (‘value2‘, ‘<f8‘), (‘value3‘, ‘<f8‘)])
1
|
data2 = np.genfromtxt(‘data2.csv‘, delimiter=‘,‘, names=True)
|
array([(1., 123., 1.4, 23.), (2., 110., nan, 18.), (3., nan, 2.1, 19.)],
dtype=[(‘id‘, ‘<f8‘), (‘value1‘, ‘<f8‘), (‘value2‘, ‘<f8‘), (‘value3‘, ‘<f8‘)])
3.12 小结 55
python数据分析实战-第3章-numpy库
标签:lse title def nump complex apply tle 运算符 基本
原文地址:https://www.cnblogs.com/LearnFromNow/p/9349924.html