标签:最小 lin 解决 分类方法 特征 估计 差分 cannot can
线性回归
优点:结果易于理解,计算上不复杂
缺点:对非线性的数据拟合不好
适用数据类型:数值型和标称型数据
horse=0.0015*annualSalary-0.99*hoursListeningToPulicRadio
这就是所谓的回归方程,其中的0.0015和-0.99称作回归系数,
求这些回归系数的过程就是回归。一旦有了这些回归系数,再给定输入,做预测就非常容易了
具体的做法就是用回归系数乘以输入值,再将结果全部加在一起,就得到了预测值
回归的一般方法
(1)收集数据:采用任意方法收集数据
(2)准备数据:回归需要数值型数据,标称型数据将被转成二值型数据(3)分析数据:绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩减法球的新回归系数之后,
可以将新拟合线绘在图上作为对比
(4)训练算法:找到回归系数
(5)测试算法:适用R2或者预测值和数据的拟合度,来分析模型的效果
(6)使用算法:使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,
因为这样可以预测连续型数据而不仅仅是离散的类别标签
应当怎样从一大堆数据中求出回归方程呢?嘉定输入数据存放在举着呢X中,而回归系数存放在向量w中,那么对于
给定的数据x1,预测结果将会通过y1=x1^T *W给出。现在的问题是,手里有些x和对应的y值,怎样才能找到W呢?
一个常用的方法就是找出使误差最小的w。这里的误差是指预测y值和真实y值之间的差值,使用该误差的简单累加
将使得正差值和负差值相互抵消,所以我们采用平方误差
1 from numpy import * 2 3 def loadDataSet(fileName): #general function to parse tab -delimited floats 4 numFeat = len(open(fileName).readline().split(‘\t‘)) - 1 #get number of fields 5 dataMat = []; labelMat = [] 6 fr = open(fileName) 7 for line in fr.readlines(): 8 lineArr =[] 9 curLine = line.strip().split(‘\t‘) 10 for i in range(numFeat): 11 lineArr.append(float(curLine[i])) 12 dataMat.append(lineArr) 13 labelMat.append(float(curLine[-1])) 14 return dataMat,labelMat 15 16 def standRegres(xArr,yArr): 17 xMat = mat(xArr); yMat = mat(yArr).T 18 xTx = xMat.T*xMat 19 if linalg.det(xTx) == 0.0: 20 print("This matrix is singular, cannot do inverse") 21 return 22 ws = xTx.I * (xMat.T*yMat) 23 return ws
线性回归的一个问题是有可能出现欠拟合现象,因为它求的是具有最小均方误差的无偏估计。
显而易见,如果模型欠拟合将不能取得较好的预测结果。所以有些方法允许在估计中引入一些偏差,
从而降低预测的均方误差。
其中一个方法是局部加权线性回归(LWLR)。在该算法中,我们给待预测点附近的每个点赋予一定的权重;
1 def lwlr(testPoint,xArr,yArr,k=1.0): 2 xMat = mat(xArr); yMat = mat(yArr).T 3 m = shape(xMat)[0] 4 weights = mat(eye((m))) 5 for j in range(m): #next 2 lines create weights matrix 6 diffMat = testPoint - xMat[j,:] # 7 weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2)) 8 xTx = xMat.T * (weights * xMat) 9 if linalg.det(xTx) == 0.0: 10 print("This matrix is singular, cannot do inverse") 11 return 12 ws = xTx.I * (xMat.T * (weights * yMat)) 13 return testPoint * ws
如果数据的特征比样本点还多应该怎么办?是否可以使用线性回归和之前的方法来做预测?
答案是否定的,即不能再使用前面介绍的方法,这是因为在计算(x^T*x)^-1的时候会出错
如果特征比样本点还多(n>m),也就是说输入数据的矩阵x不是满秩矩阵,非满秩矩阵在求逆
的时会出现问题,为解决这个问题,专家引入了岭回归的概念。简单来说,岭回归就是在矩阵
X^T*X上加一个λI从而使得矩阵非奇异,进而能对x^T*x+λI求逆。其中I是单位矩阵,λ是用户定
义的一个数值。
岭回归是缩减法的一种,相当于对回归系数的大小施加了限制。另一种很好的缩减法是lasso。Lasso难以求解,但可以使用计算简便的逐步线性回归方法来求得近似的结果
缩减法还可以看作是对一个模型增加偏差的同时减少方差。偏差方差分析折中是一个重要的概念,可以帮助我们理解现有规模并做出改进,从而得到更好的模型
标签:最小 lin 解决 分类方法 特征 估计 差分 cannot can
原文地址:https://www.cnblogs.com/zhibei/p/9355907.html