标签:names std nothing 作品 html 部落 length 最大 詹姆斯
猴子排序
钻石排序(戴蒙德排序)
恶魔排序
珠排序
地精排序(怂货排序)
智能设计排序
猴子排序的思想源自于著名的无限猴子定理。
既然猴子们能敲出《哈姆雷特》,区区排序又算什么呢?
思路:
判断数组是否有序,如果无序,进入下一步。
随机打乱数组,回到上一步。
适用人群:
欧皇
时间复杂度:
最坏情况O(∞)
最好情况O(n)
算法实现:
1 #include <bits/stdc++.h> 2 using namespace std; 3 int n,a[100005]; 4 inline void random_(){ 5 for (int i=1;i<=n;i++) swap(a[i],a[i+rand()%(n-i+1)]); 6 //打乱,AC全靠RP 7 } 8 inline bool check(){ 9 for (int i=2;i<=n;i++) if (a[i]<a[i-1]) return false; 10 return true; 11 //判断是否有序 12 } 13 inline void bogo_sort(){ 14 while (!check()) 15 random_(); 16 //核心代码 17 } 18 int main(){ 19 scanf("%d",&n); 20 srand(time(NULL)); 21 for (int i=1;i<=n;i++) scanf("%d",&a[i]); 22 bogo_sort(); 23 for (int i=1;i<=n;i++) printf("%d ",a[i]); 24 return 0; 25 }//提供者cy1306110516
钻石排序(又名戴蒙德排序)的思想源自于演化生物学家贾雷德·戴蒙德的作品《枪炮、病菌与钢铁》。
思路:
对于数组中的每一项,创造一个等同人数的人类部落。
让他们独立地发展。
第一个发展出枪支的最大,以此类推。
适用人群:
极远未来的统治阶层
时间复杂度:
O(n),常数为13000年。
代码实现:
暂无
恶魔排序的思想源自于十九世纪英国物理学家詹姆斯·克拉克·麦克斯韦的麦克斯韦恶魔假说。
思路:
创造这样的一种气体:其每一个分子运动速度与数组中的每一个数成比例。
将这样的气体灌入一个密封的盒子,该盒子被一分为二,中间有一个小孔接通两侧。
小孔一次只能经过一个分子。
每一次迅速打开小孔,让特定分子经过。
那么长时间后,盒子将一侧热一侧冷。
对于每一侧,分治进行本算法。
适用人群:
麦克斯韦的恶魔
时间复杂的:
O(n!)
代码实现:
暂无
珠排序的思想源自于中国历史悠久的算盘。(大雾)
思路:
对于每一个数字,我们用一排珠子表示。
将这些珠子叠在一起,使其自然下落。
每一层的珠子数量即为该位置数值。
适用人群:
喜好珠算的OIer
时间复杂度:
这个。。。呃呃呃看你怎么说了
代码实现:
等一下哈,本人正在敲
怂货排序。。。很怂。
思路:
当i=0或a[i]>a[i-1]时,i++。
否则交换a[i]与a[i-1],i--。
适用人群:
正常人类
时间复杂度:
O( n^2n2 )
代码实现:
1 void gnome_sort(int unsorted[]){ 2 int i = 0; 3 while (i < unsorted.Length){ 4 if (i == 0 || unsorted[i - 1] <= unsorted[i])i++; 5 else{ 6 int tmp = unsorted[i]; 7 unsorted[i] = unsorted[i - 1]; 8 unsorted[i - 1] = tmp; 9 i--; 10 } 11 } 12 }//提供者DARTH_VADER
智能设计排序的思想源自于智能设计论(智设论)。
思路:
假设我们有一些数字(它们组成了给出的数组),那么它们恰好排序成给出的数组的概率是 \frac{1}{n!}n!1?。
面对如此小的可能性,我们断言这样的数组是随机出现的,未免太过果断。
有理由相信,这样的一个数组是一个有自我意志的排序者给出的。
由于我们对排序的认知被局限在递增或递减,揣摩排序者用意的行为是不理智的。
因此大可放心:数组已被排序!
适用人群:
懒人
时间复杂度:
O(0),当然算上输入就是O(n)
代码实现:
1 #define donothing return 2 void intelligentDesignSort(int list[]){ 3 donothing; 4 }//提供者DARTH_VADER 5
标签:names std nothing 作品 html 部落 length 最大 詹姆斯
原文地址:https://www.cnblogs.com/bztMinamoto/p/9392571.html