码迷,mamicode.com
首页 > 编程语言 > 详细

python分布式进程

时间:2018-08-01 14:00:30      阅读:180      评论:0      收藏:0      [点我收藏+]

标签:ase   cal   链接   from   callable   个数   写入   queue   call   

分布式进程指的是将Process进程分布到多台机器上,充分利用多态机器的性能完成复杂的任务

  • 分布式进程在python 中依然要用到multiprocessing 模块。multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。可以写一个服务进程作为调度者,将任务分布到其他多
    个进程中,依靠网络通信进行管理。例子:在做爬虫程序时,抓取某个网站的所有图片,如果使用多进程的话,一般是一个进程负责抓取图片的链接地址,将链接地址放到queue中,另外的进程负责从queue中取链接地址进行下载和存储到本地。现在把这个过程做成分布式,一台机器上的进程负责抓取链接地址,其他机器上的进程负责系在存储。那么遇到的主要问题是将queue 暴露到网络中,让其他机器进程都可以访问,分布式进程就是将这个过程进行了封装,我们可以将这个过程称为本地队列的网络化

  • 技术分享图片

要实现上面例子的功能,创建分布式进程需要分为 六个步骤

  • 建立队列Queue ,用来进行进程间通信。服务进程创建任务队列task_queue 用来作为传递任务给任务进程的通道;服务进程创建结果队列result_queue ,作为任务进程完成任务后回复服务进程的通道。在分布式多进程环境下,必须由Queuemanager获得Queue 接口来添加任务
  • 把第一步中建立的队列在网络上注册,暴露给其他进程(主机),注册后获得网络队列,相当于本地队列的映像
  • 建立一个对象(Queuemanager(BaseManager))实例manager,绑定端口和验证口令
  • 启动第三步中建立的实例,即启动管理manager,监管信息通道
  • 通过管理实例的方法获得通过网络访问的Queue对象,即再把网络队列实体化成可以使用的本地队列
  • 创建任务到 “本地”队列中,自动上传任务到网络队列中,分配给任务进程进行处理

接下来通过程序实现上面的列子(window版),首先编写的是服务进程(taskManager.py)

#!coding:utf-8
from multiprocessing.managers import BaseManager
from multiprocessing import freeze_support, Queue

# 任务个数
task_number = 10

# 收发队列
task_quue = Queue(task_number)
result_queue = Queue(task_number)


def get_task():
    return task_quue


def get_result():
    return result_queue


# 创建类似的queueManager
class QueueManager(BaseManager):
    pass


def win_run():
    # 注册在网络上,callable 关联了Queue 对象
    # 将Queue对象在网络中暴露
    #window下绑定调用接口不能直接使用lambda,所以只能先定义函数再绑定
    QueueManager.register(‘get_task_queue‘, callable=get_task)
    QueueManager.register(‘get_result_queue‘, callable=get_result)
    # 绑定端口和设置验证口令
    manager = QueueManager(address=(‘127.0.0.1‘, 8001), authkey=‘qiye‘.encode())

    # 启动管理,监听信息通道
    manager.start()

    try:

        # 通过网络获取任务队列和结果队列
        task = manager.get_task_queue()
        result = manager.get_result_queue()

        # 添加任务
        for url in ["ImageUrl_" + str(i) for i in range(10)]:
            print(‘url is %s‘ % url)
            task.put(url)

        print(‘try get result‘)
        for i in range(10):
            print(‘result is %s‘ % result.get(timeout=10))

    except:
        print ‘Manager error‘
    finally:
        manager.shutdown()


if __name__ == ‘__main__‘:
    # window下多进程可能有问题,添加这句话缓解
    freeze_support()
    win_run()

服务进程已经编写好,接下来任务进程(taskWorker.py)创建四步骤:

  • 使用QueueManager注册用于获取Queue的方法名称,任务进程只能通过名称来网络获取Queue
  • 连接服务器,端口和验证口令注意保持与服务器进程中完全一致
  • 从网络获取Queue,进行本地化
  • 从task队列获取任务,并且把结果写入result队列
#coding:utf-8
import time
from multiprocessing.managers import BaseManager
# 创建类似的QueueManager:
class QueueManager(BaseManager):
    pass
# 实现第一步:使用QueueManager注册获取Queue的方法名称
QueueManager.register(‘get_task_queue‘)
QueueManager.register(‘get_result_queue‘)
# 实现第二步:连接到服务器:
server_addr = ‘127.0.0.1‘
print(‘Connect to server %s...‘ % server_addr)
# 端口和验证口令注意保持与服务进程设置的完全一致:
m = QueueManager(address=(server_addr, 8001), authkey=‘qiye‘)
# 从网络连接:
m.connect()
# 实现第三步:获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 实现第四步:从task队列取任务,并把结果写入result队列:
while(not task.empty()):
        image_url = task.get(True,timeout=5)
        print(‘run task download %s...‘ % image_url)
        time.sleep(1)
        result.put(‘%s--->success‘%image_url)
# 处理结束:
print(‘worker exit.‘)

运行结果:

  • taskManager.py
C:\Python27\python.exe F:/python_scrapy/python_study/taskManager.py
url is ImageUrl_0
url is ImageUrl_1
url is ImageUrl_2
url is ImageUrl_3
url is ImageUrl_4
url is ImageUrl_5
url is ImageUrl_6
url is ImageUrl_7
url is ImageUrl_8
url is ImageUrl_9
try get result
result is ImageUrl_0--->success
result is ImageUrl_1--->success
result is ImageUrl_2--->success
result is ImageUrl_3--->success
result is ImageUrl_4--->success
result is ImageUrl_5--->success
result is ImageUrl_6--->success
result is ImageUrl_7--->success
result is ImageUrl_8--->success
result is ImageUrl_9--->success

Process finished with exit code 0
  • 任务进程(taskWorker.py)
C:\Python27\python.exe F:/python_scrapy/python_study/taskWorker.py
Connect to server 127.0.0.1...
run task download ImageUrl_0...
run task download ImageUrl_1...
run task download ImageUrl_2...
run task download ImageUrl_3...
run task download ImageUrl_4...
run task download ImageUrl_5...
run task download ImageUrl_6...
run task download ImageUrl_7...
run task download ImageUrl_8...
run task download ImageUrl_9...
worker exit.

Process finished with exit code 0

python分布式进程

标签:ase   cal   链接   from   callable   个数   写入   queue   call   

原文地址:https://www.cnblogs.com/guguobao/p/9400299.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!