码迷,mamicode.com
首页 > 编程语言 > 详细

聚类算法相关

时间:2018-08-02 02:03:02      阅读:169      评论:0      收藏:0      [点我收藏+]

标签:主题模型   等于   混合高斯   样本   高斯   ISE   mod   cti   自己的   

Bisecting KMeans

Bisecting KMeans算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二,之后选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇,以此进行下去,直到簇的数目等于用户给定的数目k为止。

Gaussian Mixture Model

所谓混合高斯模型就是指对样本的概率密度分布进行估计,而估计的模型是几个高斯模型加权之和(具体是几个要在模型训练前建立好)。每个高斯模型就代表了一个类(一个Cluster)。对样本中的数据分别在几个高斯模型上投影,就会分别得到在各个类上的概率。然后我们可以选取概率最大的类所为判决结果。

Latent Dirichlet Allocation

LDA主题模型的思想是将一篇文档中的内容抽象成多个主题,每个主题拥有自己的词,并且每篇文档按照概率分布的形式给出。

聚类算法相关

标签:主题模型   等于   混合高斯   样本   高斯   ISE   mod   cti   自己的   

原文地址:https://www.cnblogs.com/hbwxcw/p/9404731.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!