码迷,mamicode.com
首页 > 编程语言 > 详细

Python-内存管理

时间:2018-08-02 20:49:26      阅读:119      评论:0      收藏:0      [点我收藏+]

标签:简介   情况下   小数   共享   检查   空间   引入   python   free   

Python内存管理


Python的内存管理主要有三种机制:引用计数机制,垃圾回收机制和内存池机制。

1、引用计数机制

简介 
python内部使用引用计数,来保持追踪内存中的对象,Python内部记录了对象有多少个引用,
即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收。

特性 
1.当给一个对象分配一个新名称或者将一个对象放入一个容器(列表、元组或字典)时,该对象的引用计数都会增加。

2.当使用del对对象显示销毁或者引用超出作用于或者被重新赋值时,该对象的引用计数就会减少。

3.可以使用sys.getrefcount()函数来获取对象的当前引用计数。多数情况下,引用计数要比我们猜测的大的多。
对于不可变数据(数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。

 

 

2、垃圾回收机制

特性 
1.当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。它会去检查那些引用计数为0的对象,然后清除其在内存的空间。
当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。

2.垃圾回收机制还有一个循环垃圾回收器, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。

 

 

3、内存池机制

简介 
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,
所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,
这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。

内存池概念 
内存池的概念就是预先在内存中申请一定数量的,大小相等的内存块留作备用,当有新的内存需求时,就先从内存池中分配内存给这个需求,
不够了之后再申请新的内存。这样做最显著的优势就是能够减少内存碎片,提升效率。内存池的实现方式有很多,性能和适用范围也不一样。

特性 
1.Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。

2.Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。

3.Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的 malloc。

4.对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,
用于缓存这些整数的内存就不能再分配给浮点数。

 

注:

  int的小数据池,数字范围不超过-5~256,在赋值过程中数据不超过这个范围,则内存地址不变。

  str的小数据池,str的相乘s * 20 (包括特殊字符和数字),还是在同一个地址,s*21以后都是两个内存地址

Python-内存管理

标签:简介   情况下   小数   共享   检查   空间   引入   python   free   

原文地址:https://www.cnblogs.com/JerryZao/p/9409314.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!