码迷,mamicode.com
首页 > 编程语言 > 详细

hadoop第五课:java开发Map/Reduce

时间:2018-08-07 16:46:21      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:string   org   src   dex   分享图片   需要   lin   path   getc   

配置系统环境变量HADOOP_HOME,指向hadoop安装目录(如果你不想招惹不必要的麻烦,不要在目录中包含空格或者中文字符)
把HADOOP_HOME/bin加到PATH环境变量(非必要,只是为了方便)
如果是在windows下开发,需要添加windows的库文件
把盘中共享的bin目录覆盖HADOOP_HOME/bin
如果还是不行,把其中的hadoop.dll复制到c:\windows\system32目录下,可能需要重启机器
建立新项目,引入hadoop需要的jar文件

代码WordMapper:

技术分享图片
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
 
public class WordMapper extends Mapper<LongWritable,Text, Text, IntWritable> {
 
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {
        String line = value.toString();
        String[] words = line.split(" ");
        for(String word : words) {
            context.write(new Text(word), new IntWritable(1));
        }
    }
     
}
技术分享图片

代码WordReducer:

技术分享图片
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
 
public class WordReducer extends Reducer<Text, IntWritable, Text, LongWritable> {
 
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,
            Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
        long count = 0;
        for(IntWritable v : values) {
            count += v.get();
        }
        context.write(key, new LongWritable(count));
    }
     
}
技术分享图片

代码Test:

技术分享图片
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 
 
public class Test {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
                         
        Job job = Job.getInstance(conf);
         
        job.setMapperClass(WordMapper.class);
        job.setReducerClass(WordReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
         
        FileInputFormat.setInputPaths(job, "c:/bigdata/hadoop/test/test.txt");
        FileOutputFormat.setOutputPath(job, new Path("c:/bigdata/hadoop/test/out/"));
         
        job.waitForCompletion(true);
    }
}
技术分享图片

把hdfs中的文件拉到本地来运行

FileInputFormat.setInputPaths(job, "hdfs://master:9000/wcinput/");
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/wcoutput2/"));

注意这里是把hdfs文件拉到本地来运行,如果观察输出的话会观察到jobID带有local字样
同时这样的运行方式是不需要yarn的(自己停掉yarn服务做实验)
在远程服务器执行

技术分享图片
conf.set("fs.defaultFS", "hdfs://master:9000/");
 
conf.set("mapreduce.job.jar", "target/wc.jar");
conf.set("mapreduce.framework.name", "yarn");
conf.set("yarn.resourcemanager.hostname", "master");
conf.set("mapreduce.app-submission.cross-platform", "true");

FileInputFormat.setInputPaths(job, "/wcinput/");
FileOutputFormat.setOutputPath(job, new Path("/wcoutput3/"));
技术分享图片

如果遇到权限问题,配置执行时的虚拟机参数-DHADOOP_USER_NAME=root
也可以将hadoop的四个配置文件拿下来放到src根目录下,就不需要进行手工配置了,默认到classpath目录寻找
或者将配置文件放到别的地方,使用conf.addResource(.class.getClassLoader.getResourceAsStream)方式添加,不推荐使用绝对路径的方式

hadoop第五课:java开发Map/Reduce

标签:string   org   src   dex   分享图片   需要   lin   path   getc   

原文地址:https://www.cnblogs.com/yuexiaoyun/p/9437768.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!