码迷,mamicode.com
首页 > 编程语言 > 详细

用python对股票期货做时序分析

时间:2018-08-19 15:43:21      阅读:237      评论:0      收藏:0      [点我收藏+]

标签:range   size   att   预测   label   import   tsm   cti   now()   

CFFEX.IF1808,截止到当日的1000条收盘价格走势:

# encoding: utf-8
import talib
from talib.abstract import SMA
import numpy as np
import pandas as pd
import math
import datetime
from collections import deque
from gm.api import *  #掘金
import matplotlib.pyplot as plt
import matplotlib as mpl
import mpl_finance as mpf
import matplotlib.dates as mpd
import seaborn as sns
import statsmodels.tsa.stattools as ts
import statsmodels.api as sm
from statsmodels.tsa.arima_model import ARMA
from scipy import  stats
from statsmodels.graphics.api import qqplot

set_token(‘****************************‘) #自行填写自己的token

  

now=datetime.datetime.now().date()
last_day=get_previous_trading_date(exchange=‘SHSE‘,date=now)
index_futures=get_continuous_contracts(csymbol=‘CFFEX.IF‘,start_date=last_day,end_date=last_day)
#print index_futures
strike_info=history_n(symbol=‘CFFEX.IF1808‘,frequency=‘60s‘,end_time=‘2018-07-01‘,fields=‘symbol,close,frequency,cum_volume‘,count=1000,df=True)
strike_info.dropna()
price=np.array(strike_info[‘close‘]) 

  

技术分享图片

一个时间序列,他可能是有趋势的,是不平稳的,所以如果不平稳需要做差分。

ADF检测结果:

95%置信区间,p=0.0076,99%置信区间下,p=-3.5。对模型做一阶差分,希望得到一个平稳的时间序列

一阶差分后,模型基本平稳:

p=ts.adfuller(strike_info[‘close‘])[0]
#print p
price_log=strike_info[‘close‘].diff()

  

技术分享图片

 

AR(p)模型,PACF会在lag=p时截尾,也就是,PACF图中的值落入宽带区域中。

MA(q)模型,ACF会在lag=q时截尾,同理,ACF图中的值落入宽带区域中。

用ACF(自相关系数)或者PACF(偏自相关系数)观察模型:

fig = plt.figure(figsize=(12,8))
ax1=fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(strike_info[‘close‘],lags=40,ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(strike_info[‘close‘],lags=40,ax=ax2)
plt.show()

  

技术分享图片

优先选择PACF图,因为PACF大约在lag=1时截尾,即PACF的值落入宽带区域中

选择AR(P=1)的模型进行自回归拟合,得到拟合效果:

arma_mod80 = sm.tsa.ARMA(strike_info[‘close‘],(1,0)).fit()
print(arma_mod80.aic,arma_mod80.bic,arma_mod80.hqic)
resid = arma_mod80.resid
print(sm.stats.durbin_watson(arma_mod80.resid.values))
print(stats.normaltest(resid))
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
fig = qqplot(resid, line=‘q‘, ax=ax, fit=True)
plt.show()

  

 技术分享图片

检验:计算得到序列的残差,基本为白噪音

fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(resid.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2)
plt.show()

  

 技术分享图片

用自回归拟合的模型进行预测,结果如下:

fig=plt.figure(figsize=(15,7))
price2=strike_info=history_n(symbol=‘CFFEX.IF1808‘,frequency=‘60s‘,end_time=‘2018-07-01‘,fields=‘symbol,close,frequency,cum_volume‘,count=1000,df=True)[‘close‘]
price3=strike_info=history_n(symbol=‘CFFEX.IF1808‘,frequency=‘60s‘,end_time=now,fields=‘symbol,close,frequency,cum_volume‘,count=1000,df=True)[‘close‘]
print len(price2)
fit = arma_mod80.predict(0, 1100)
plt.plot(range(1100),fit[:1100],label=‘predict‘)
plt.plot(price2,label=‘price‘)
plt.legend(loc=4)
plt.show()

  

 技术分享图片

 

用python对股票期货做时序分析

标签:range   size   att   预测   label   import   tsm   cti   now()   

原文地址:https://www.cnblogs.com/timotong/p/9501228.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!