标签:训练 RoCE none 网格 size ext 图片 nta 尺度
解决方案:将所有的数据映射到同一尺度
preprocessing.py
import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获得数据的均值和方差""" assert X.ndim == 2, "The dimension of X must be 2" self.mean_ = np.array([np.mean(X[:,i]) for i in range(X.shape[1])]) self.scale_ = np.array([np.std(X[:,i]) for i in range(X.shape[1])]) return self def transform(self, X): """将X根据这个StandardScaler进行均值方差归一化处理""" assert X.ndim == 2, "The dimension of X must be 2" assert self.mean_ is not None and self.scale_ is not None, "must fit before transform!" assert X.shape[1] == len(self.mean_), "the feature number of X must be equal to mean_ and std_" resX = np.empty(shape=X.shape, dtype=float) for col in range(X.shape[1]): resX[:,col] = (X[:,col] - self.mean_[col]) / self.scale_[col] return resX
优点:
机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)
标签:训练 RoCE none 网格 size ext 图片 nta 尺度
原文地址:https://www.cnblogs.com/zhangtaotqy/p/9534929.html