码迷,mamicode.com
首页 > 编程语言 > 详细

Bor?vka 算法求 MST 最小生成树

时间:2018-08-26 11:45:26      阅读:280      评论:0      收藏:0      [点我收藏+]

标签:cpp   continue   gif   bre   r++   wiki   索引   处理   join   

基本思路:用定点数组记录每个子树的最近邻居。对于每一条边进行处理:如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并)。时间复杂度平均 \(O(V+E)\),最坏 \(O((V+E)\log V)\)

下面是 Bor?vka 算法演示动图:(源:Wikimedia)

技术分享图片

程序代码:

struct node {int x, y, w; } edge[M];
int d[N];   // 各子树的最小连外边的权值
int e[N];   // 各子树的最小连外边的索引
bool v[M];  // 防止边重复统计

int fa[N];
int find(int x) {return x==fa[x] ? x : (fa[x]=find(fa[x])); }
void join(int x, int y) {fa[find(x)]=find(y); }

int Boruvka() {
    int tot=0;
    for (int i=1; i<=n; ++i) fa[i]=i;
    while (true) {
        int cur=0;
        for (int i=1; i<=n; ++i) d[i]=inf;
        for (int i=1; i<=m; ++i) {
            int a=find(edge[i].x), b=find(edge[i].y), c=edge[i].w;
            if (a==b) continue;
            cur++;
            if (c<d[a] || c==d[a] && i<e[a]) d[a]=c, e[a]=i;
            if (c<d[b] || c==d[b] && i<e[b]) d[b]=c, e[b]=i;
        }
        if (cur==0) break;
        for (int i=1; i<=n; ++i) if (d[i]!=inf && !v[e[i]]) {
            join(edge[e[i]].x, edge[e[i]].y), tot+=edge[e[i]].w;
            v[e[i]]=true;
        }
    }
    return tot;
}

Bor?vka 算法求 MST 最小生成树

标签:cpp   continue   gif   bre   r++   wiki   索引   处理   join   

原文地址:https://www.cnblogs.com/greyqz/p/9536352.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!