标签:range 效率 res i++ 超过 lan color sub 扩展
Subtask1(10pts):最朴素的暴力 枚举字符串的所有子串,判断其是否回文,时间复杂度是O(n3)的
Subtask2(30pts):利用回文串的性质: 所有的回文串都是对称的。
长度为奇数回文串以最中间字符的位置为对称轴左右对称,
而长度为偶数的回文串的对称轴在中间两个字符之间的空隙。
可以遍历这些对称轴,
在每个对称轴上同时向左和向右扩展,直到左右两边的字符不同或者到达边界。
时间复杂度O(n2)
Subtask3(100pts):?(当然是Manacher算法囖)O(n)
改进优化 Subtask2(30pts) :
1.麻烦程度(预处理字符串)
在每两个字符中间插入另一个字符,如‘#‘。
也就是说,原来的字符串是这样的
现在的字符串是这样的(为了不越界以及方便,a[0]设置为‘#’)
那么这个缺点解决了(现在不用分奇数偶数讨论了qwq)
【图是哪里偷过来的,足以说明问题】
2.会出现很多子串被重复多次访问,时间效率大幅降低。
要想降维 O(n)的做法是每一位只扫一次或常数次这里每一位都扫了将近n次
------------------(正文分割线)----------------------
定义几个变量P[i]表示在处理过后的数组中的第i个点最长向左边拓展P[i]个数位都能保证他是回文(右边不记录因为左右对称)
那么p[1]=1,p[2]=2,p[3]=1,p[4]=2,p[5]=1,p[6]=2,p[7]=5,p[8]=2,p[9]=1,p[10]=2,p[11]=1,p[12]=2,p[13]=1;
可以发现所有#的地方大部分都是1
其实上面那句话是错的!!! p[7]=5 ???
P[i]-1代表什么? 原串(不插入#前)中第i位置的回文串长度(包含中间点)
证明:
1、显然L=2*P[i]-1即为新串(加#)中以第i个点为中心最长回文串长度。
2、以第i位 为中心的回文串一定是以#开头和#结尾的,例如“#b#b#”或“#b#a#b#”
所以L减去最前或者最后的‘#’字符就是原串中长度的二倍,即原串长度为(L-1)/2,化简的P[i]-1。
得证。
【再偷2张图片】
maxId表示前面运行过程中求得最大回文串的最右端
id(后面程序是MID)表示此时最大回文串的对称点,i代表当前遍历到第i个位置
显然我们可以轻易算出i关于id(MID)对称点的坐标j
由id是ij的中点可知 (i+j)/2=id,由此可知 j=2*id-i(所以程序运行的时候就不用记录j了直接用id和i算就行)
运用动态规划的思想在算P[i]的时候P[j] | j∈ [1,i) 都已经算出那么若j为i关于id(MID)的对称点那么P[i]∈ [P[j],+∞)
就是P[i]不可能比P[j]短,为什么呢?
利用回文串的对称性j和i关于id(MID)对称,MaxId和左边MinId(对于id(MID)的对称点)关于id对称
那么j到id回文串半径为P[j],对称过来到id右边i的左边那么回文串半径也为P[j],
而P[i]没有算出来所以就是P[i]不可能比P[j]短 即 P[i]∈ [P[j],+∞)
分类讨论:
若对称过来超过MaxId那么这样的对称是不合法的 P[j]=1从该点老老实实向两边拓展
就是P[j]对称到i的左右,i右端超过MaxId(触及不该触及的地方),就是不合法,因为右边你并不知道
若对称过来没有超过MaxId那么这样的对称是合法的 P[i]=p[j]然后往右拓展
在移动的过程中顺便更新MaxId和P[i]就行
到这里你已经完成了 Subtask3 对于100%的数据|S|<10000000的数据
复杂度证明?
manacher算法只需要线性扫描一遍预处理后的字符串。
对p[]数组的处理 i 为 j 关于 id 的对称点
1. (i<MaxId)
2.其他情况 p[i]=0
1. 在i<MaxId的情况下,p的值可以在O(1) 时间内确定
2. 在i>MaxId 的情况下,p的值需要O(n) 的时间内确定,
但是在情况2下,每次扫描都从MaxId开始,且MaxId自身的变化情况是单调递增的,
这样可以保证,字符串中的每个字符最多被访问2次,
所以,该算法的时间复杂度是线性O(n)
只需要弄清楚两点:
1.while()循环本身的时间复杂度在没有前提条件的情况下确实是O(n)
2.但是这里的MaxId,是不断往后走而不可能往前退的,它自身的值的变化是递增的。
那么你可以明白,要进入while循环,
i 的值必然是比MaxId大的,
也就是说整个程序结束为止,
while循环执行的操作数为n次(线性次),
而字符串中的每个字符,最多能被访问到2次。
时间复杂度必然为O(n)
贴下代码:
# include <bits/stdc++.h> using namespace std; const int MAXN=11000005*2; char a[2*MAXN]; int p[2*MAXN]; int main() { char ch=getchar();int t=0; a[0]=‘?‘;//为了保险起见a[0]和最后的符号不能一样 while (isalpha(ch)) { t++; a[2*t]=ch; a[2*t-1]=‘#‘; ch=getchar(); } a[2*t+1]=‘#‘; int n=2*t+1; int MID=0,R=0,i; //MID就是id,R就是MaxId,i就是i for (i=1;i<=n;i++) { if (R>i) p[i]=min(p[2*MID-i],R-i); else p[i]=1; while (a[i-p[i]]==a[i+p[i]]) p[i]++; if (i+p[i]>R) R=i+p[i],MID=i; } int ans=0; for (int i=1;i<=n;i++) ans=max(ans,p[i]-1); printf("%d\n",ans); return 0; }
给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.
字符串长度为n
输入格式:
一行小写英文字符a,b,c...y,z组成的字符串S
输出格式:
一个整数表示答案
字符串长度|S| <= 11000000
这里有着注意点:不能判断回车否则是TLE,应该判断不是字母时果断跳出
标签:range 效率 res i++ 超过 lan color sub 扩展
原文地址:https://www.cnblogs.com/ljc20020730/p/9546690.html