标签:and 就会 number 兴趣 enc case 版本 位置 dict
为了加深理解,我对SSD项目进行了复现,基于原版,有按照自己理解的修改,
项目见github:SSD_Realization_TensorFlow、SSD_Realization_MXNet
构建思路按照训练主函数的步骤顺序,文末贴了出来,下面我们按照这个顺序简要介绍一下各个流程的重点,想要详细了解的建议看一看之前的解读源码的对应篇章(tf),或者看看李沐博士的ssd介绍视频(虽然不太详细,不过结合讲义思路很清晰,参见:『MXNet』第十弹_物体检测SSD)。
SSD架构主要有四个部分,网络设计、搜索框设计、学习目标处理、损失函数实现。
重点在于正常前向网络中挑选出的特征层分别添加两个卷积出口:分类和回归出口,用于对应后面的每个搜索框的各个类别得分、以及4个坐标值。
对应网络的特征层:每个层有若干搜索框,我们需要搜索框位置形状信息。对于tf版本我们保存了每个框的中心点以及HW信息,而mx版本我们保存的是左上右下两个的4个坐标数值,mx更为直观,但是tf版本节省空间:一组框对应同一个中心点,不过搜索框信息量不大,b无伤大雅。
个人感觉最为繁琐,我们需要的的信息包含(此时已经获得了):一组搜索框(实际上指的是全部搜索框的n4个坐标值),图片的label、图片的真实框坐标(对应label数目4),我们需要的就是找到搜索框和真是图片的标签联系,
获取:
每个搜索框对应的分类(和哪个真实框的IOU最大就选真实框的类别标注给该搜索,也就是说会出现大量的0 class搜索框)
每个搜索框的坐标的回归目标(同上的寻找方法,空位也为0)
负类掩码,虽然每张图片里面通常只有几个标注的边框,但SSD会生成大量的锚框。可以想象很多锚框都不会框住感兴趣的物体,就是说跟任何对应感兴趣物体的表框的IoU都小于某个阈值。这样就会产生大量的负类锚框,或者说对应标号为0的锚框。对于这类锚框有两点要考虑的:
1、边框预测的损失函数不应该包括负类锚框,因为它们并没有对应的真实边框
2、因为负类锚框数目可能远多于其他,我们可以只保留其中的一些。而且是保留那些目前预测最不确信它是负类的,就是对类0预测值排序,选取数值最小的哪一些困难的负类锚框
所以需要使用掩码,抑制一部分计算出来的loss。
可讲的不多,按照公式实现即可,重点也在上一步计算出来的掩码处理损失函数值一步。
if __name__ == ‘__main__‘: batch_size = 4 ctx = mx.cpu(0) # ctx = mx.gpu(0) # box_metric = mx.MAE() cls_metric = mx.metric.Accuracy() ssd = ssd_mx.SSDNet() ssd.initialize(ctx=ctx) # mx.init.Xavier(magnitude=2) cls_loss = util_mx.FocalLoss() box_loss = util_mx.SmoothL1Loss() trainer = mx.gluon.Trainer(ssd.collect_params(), ‘sgd‘, {‘learning_rate‘: 0.01, ‘wd‘: 5e-4}) data = get_iterators(data_shape=304, batch_size=batch_size) for epoch in range(30): # reset data iterators and metrics data.reset() cls_metric.reset() # box_metric.reset() tic = time.time() for i, batch in enumerate(data): start_time = time.time() x = batch.data[0].as_in_context(ctx) y = batch.label[0].as_in_context(ctx) # 将-1占位符改为背景标签0,对应坐标框记录为[0,0,0,0] y = nd.where(y < 0, nd.zeros_like(y), y) with mx.autograd.record(): # anchors, 检测框坐标,[1,n,4] # class_preds, 各图片各检测框分类情况,[bs,n,num_cls + 1] # box_preds, 各图片检测框坐标预测情况,[bs, n * 4] anchors, class_preds, box_preds = ssd(x, True) # box_target, 检测框的收敛目标,[bs, n * 4] # box_mask, 隐藏不需要的背景类,[bs, n * 4] # cls_target, 记录全检测框的真实类别,[bs,n] box_target, box_mask, cls_target = ssd_mx.training_targets(anchors, class_preds, y) loss1 = cls_loss(class_preds, cls_target) loss2 = box_loss(box_preds, box_target, box_mask) loss = loss1 + loss2 loss.backward() trainer.step(batch_size) if i % 1 == 0: duration = time.time() - start_time examples_per_sec = batch_size / duration sec_per_batch = float(duration) format_str = "[*] step %d, loss=%.2f (%.1f examples/sec; %.3f sec/batch)" print(format_str % (i, nd.sum(loss).asscalar(), examples_per_sec, sec_per_batch)) if i % 500 == 0: ssd.model.save_parameters(‘model_mx_{}.params‘.format(epoch))
def main(): max_steps = 1500 batch_size = 32 adam_beta1 = 0.9 adam_beta2 = 0.999 opt_epsilon = 1.0 num_epochs_per_decay = 2.0 num_samples_per_epoch = 17125 moving_average_decay = None tf.logging.set_verbosity(tf.logging.DEBUG) with tf.Graph().as_default(): # Create global_step. with tf.device("/device:CPU:0"): global_step = tf.train.create_global_step() ssd = SSDNet() ssd_anchors = ssd.anchors # tfr解析操作放在GPU下有加速,效果不稳定 dataset = tfr_data_process.get_split(‘./TFR_Data‘, ‘voc2012_*.tfrecord‘, num_classes=21, num_samples=num_samples_per_epoch) with tf.device("/device:CPU:0"): # 仅CPU支持队列操作 image, glabels, gbboxes = tfr_data_process.tfr_read(dataset) image, glabels, gbboxes = preprocess_img_tf.preprocess_image(image, glabels, gbboxes, out_shape=(300, 300)) gclasses, glocalisations, gscores = ssd.bboxes_encode(glabels, gbboxes, ssd_anchors) batch_shape = [1] + [len(ssd_anchors)] * 3 # (1,f层,f层,f层) # Training batches and queue. r = tf.train.batch( # 图片,中心点类别,真实框坐标,得分 util_tf.reshape_list([image, gclasses, glocalisations, gscores]), batch_size=batch_size, num_threads=4, capacity=5 * batch_size) batch_queue = slim.prefetch_queue.prefetch_queue( r, # <-----输入格式实际上并不需要调整 capacity=2 * 1) # Dequeue batch. b_image, b_gclasses, b_glocalisations, b_gscores = util_tf.reshape_list(batch_queue.dequeue(), batch_shape) # 重整list predictions, localisations, logits, end_points = ssd.net(b_image, is_training=True, weight_decay=0.00004) ssd.losses(logits, localisations, b_gclasses, b_glocalisations, b_gscores, match_threshold=.5, negative_ratio=3, alpha=1, label_smoothing=.0) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # =================================================================== # # Configure the moving averages. # =================================================================== # if moving_average_decay: moving_average_variables = slim.get_model_variables() variable_averages = tf.train.ExponentialMovingAverage( moving_average_decay, global_step) else: moving_average_variables, variable_averages = None, None # =================================================================== # # Configure the optimization procedure. # =================================================================== # with tf.device("/device:CPU:0"): # learning_rate节点使用CPU(不明) decay_steps = int(num_samples_per_epoch / batch_size * num_epochs_per_decay) learning_rate = tf.train.exponential_decay(0.01, global_step, decay_steps, 0.94, # learning_rate_decay_factor, staircase=True, name=‘exponential_decay_learning_rate‘) optimizer = tf.train.AdamOptimizer( learning_rate, beta1=adam_beta1, beta2=adam_beta2, epsilon=opt_epsilon) tf.summary.scalar(‘learning_rate‘, learning_rate) if moving_average_decay: # Update ops executed locally by trainer. update_ops.append(variable_averages.apply(moving_average_variables)) # Variables to train. trainable_scopes = None if trainable_scopes is None: variables_to_train = tf.trainable_variables() else: scopes = [scope.strip() for scope in trainable_scopes.split(‘,‘)] variables_to_train = [] for scope in scopes: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) variables_to_train.extend(variables) losses = tf.get_collection(tf.GraphKeys.LOSSES) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) regularization_loss = tf.add_n(regularization_losses) loss = tf.add_n(losses) tf.summary.scalar("loss", loss) tf.summary.scalar("regularization_loss", regularization_loss) grad = optimizer.compute_gradients(loss, var_list=variables_to_train) grad_updates = optimizer.apply_gradients(grad, global_step=global_step) update_ops.append(grad_updates) # update_op = tf.group(*update_ops) with tf.control_dependencies(update_ops): total_loss = tf.add_n([loss, regularization_loss]) tf.summary.scalar("total_loss", total_loss) # =================================================================== # # Kicks off the training. # =================================================================== # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8) config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options) saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1.0, write_version=2, pad_step_number=False) if True: import os import time print(‘start......‘) model_path = ‘./logs‘ batch_size = batch_size with tf.Session(config=config) as sess: summary = tf.summary.merge_all() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) writer = tf.summary.FileWriter(model_path, sess.graph) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) init_op.run() for step in range(max_steps): start_time = time.time() loss_value = sess.run(total_loss) # loss_value, summary_str = sess.run([train_tensor, summary_op]) # writer.add_summary(summary_str, step) duration = time.time() - start_time if step % 10 == 0: summary_str = sess.run(summary) writer.add_summary(summary_str, step) examples_per_sec = batch_size / duration sec_per_batch = float(duration) format_str = "[*] step %d, loss=%.2f (%.1f examples/sec; %.3f sec/batch)" print(format_str % (step, loss_value, examples_per_sec, sec_per_batch)) # if step % 100 == 0: # accuracy_step = test_cifar10(sess, training=False) # acc.append(‘{:.3f}‘.format(accuracy_step)) # print(acc) if step % 500 == 0 and step != 0: saver.save(sess, os.path.join(model_path, "ssd_tf.model"), global_step=step) coord.request_stop() coord.join(threads)
标签:and 就会 number 兴趣 enc case 版本 位置 dict
原文地址:https://www.cnblogs.com/hellcat/p/9540591.html