码迷,mamicode.com
首页 > 编程语言 > 详细

泰坦尼克号生存预测(python)

时间:2018-08-31 18:03:18      阅读:2670      评论:0      收藏:0      [点我收藏+]

标签:map   sel   die   boosting   atm   技术   预测   pandas   color   

1 数据探索

对数据进行一个整体的理解

1.1 查看数据都有一些什么特征

import pandas as pd
import seaborn as sns
%matplotlib inline
titanic = pd.read_csv(G:\\titanic\\train.csv)
titanic.sample(10)

技术分享图片

 获取数据的10行记录进行观察,初步了解数据的组成,可以看到Age、Cabin里面是存在缺失值的,在进一步理解数据的统计量后再进行数据处理,观察各特征的最大最小值等,可以发现这些数据比较合理,不存在特别的异常值。

print(titanic.describe())
#查看常用的统计量

技术分享图片

2 数据分析\处理

Name和Ticket依据基本认知来看,与乘客是否有机会存活相关不大,因此暂时不理会这两个特征。由于Cabin这一个特征缺失值比较多,参考价值低,因此同样暂时搁置。

2.1 Sex特征处理

Sex分为female和male,但是一些算法模型只能识别数字,所以将他们分别用0和1表示

titanic.Sex = titanic.Sex.replace("male",1)
titanic.Sex = titanic.Sex.replace("female",0)

 

2.2 Age特征处理

Age这里存在缺失值,有年纪记录的有714行,这里使用age的平均数来进行填充缺失值

titanic.Age = titanic["Age"].fillna(titanic.Age.mean())

 

2.3 Embarked特征处理

将Embarked的S C Q分别替换为0 1 2

titanic.Embarked = titanic.Embarked.replace("S",0)
titanic.Embarked = titanic.Embarked.replace("C",1)
titanic.Embarked = titanic.Embarked.replace("Q",2)

 

查看Embarked特征统计量发现,他存在缺失值,这里用众数进行替换缺失值

titanic.Embarked = titanic["Embarked"].fillna(0)

 

3 特征工程

通过热力图观察各特征与Survived之间的相关性

info = ["Survived","PassengerId","Pclass","Sex","Age","SibSp","Parch","Fare","Embarked"]
sns.heatmap(titanic[info].corr(),annot =True,vmin = 0, vmax = 1)

技术分享图片

根据热力图可以看出Pclass、Sex、Fare、Embarked与Survived相关性比较强,所以将这些特征代入机器学习模型中进行学习

4 模型学习/评估

import numpy as np
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
x = titanic[["Pclass","Sex","Age","Fare","Embarked"]]
y = titanic["Survived"]

 

这里采用交叉检验的方法,最后取平均值来对模型进行评估

4.1 逻辑回归

lm = linear_model.LogisticRegression()
scores = cross_val_score(lm,x,y,cv = 5,scoring = "accuracy")
print(np.mean(scores))

 技术分享图片

4.2 k近邻

from sklearn import neighbors
knn = neighbors.KNeighborsClassifier(10,weights = "uniform")
scores = cross_val_score(knn,x,y,cv = 5,scoring = "accuracy")
print(np.mean(score)

 技术分享图片

4.3 决策树

from sklearn import tree
dt = tree.DecisionTreeClassifier()
scores = cross_val_score(dt,x,y,cv = 5,scoring = "accuracy")
print(np.mean(scores))

技术分享图片

4.4 随机森林

from sklearn import ensemble
rf = ensemble.RandomForestClassifier(50)
scores = cross_val_score(rf,x,y,cv = 5,scoring = "accuracy")
print(np.mean(scores))

技术分享图片

4.5 GBDT

gbdt = ensemble.GradientBoostingClassifier()
scores = cross_val_score(gbdt,x,y,cv = 5,scoring = "accuracy")
print(np.mean(scores))

技术分享图片

5 总结

经过数据探索、数据处理、常用机器学习模型比较,最后可以发现GBDT在泰坦尼克号生存预测上面表现最好,准确率能达到82%以上。 

 

泰坦尼克号生存预测(python)

标签:map   sel   die   boosting   atm   技术   预测   pandas   color   

原文地址:https://www.cnblogs.com/islvgb/p/9567074.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!