标签:int print inf oid ++ printf def nan blank
https://nanti.jisuanke.com/t/31460
两个操作。1:查询区间[l,r]的和,设长度为L=r-l+1, sum=a[l]*L+a[l+1]*(L-1)+...+a[r]。2:将第a个位置修改为b。
变形一下,sum=a[l]*(r-l+1)+a[l+1]*(r-(l+1)-1)+...+a[r](r-r+1)=(r+1)*a[l]-a[l]*l。因此,可维护两个树状数组计算。至于更新操作,实质就是看变化前后的差值,变大就相当与加上差值,否则就是减。注意用longlong
#include<bits/stdc++.h> const int maxn = 1e5 + 10; const int inf = 0x3f3f3f3f; const int mod = 1e9 + 7; typedef long long ll; ll c1[maxn],c2[maxn]; int a[maxn]; int lb(int x){ return x&-x; } void add(ll c[],int x,ll d){ while(x<maxn){ c[x]+=d; x+=lb(x); } } ll sum(ll c[],int x){ ll res=0; while(x){ res+=c[x]; x-=lb(x); } return res; } ll query(int l,int r){ return (r+1)*(sum(c1,r)-sum(c1,l-1))-(sum(c2,r)-sum(c2,l-1)); } int main(){ int n,q; int op,x,y; scanf("%d%d",&n,&q); for(int i=1;i<=n;i++) { scanf("%d",&x); add(c1,i,x); add(c2,i,1ll*i*x); a[i]=x; } while(q--){ scanf("%d%d%d",&op,&x,&y); if(op==1){ printf("%lld\n",query(x,y)); }else{ add(c1,x,y-a[x]); add(c2,x,1ll*x*(y-a[x])); a[x]=y; } } return 0; }
ACM-ICPC 2018 徐州赛区网络预赛 H Ryuji doesn't want to study (树状数组差分)
标签:int print inf oid ++ printf def nan blank
原文地址:https://www.cnblogs.com/fht-litost/p/9668515.html