创建表
create ‘test1‘, ‘lf‘, ‘sf‘
lf: column family of LONG values (binary value)
-- sf: column family of STRING values
导入数据
put ‘test1‘, ‘user1|ts1‘, ‘sf:c1‘, ‘sku1‘ put ‘test1‘, ‘user1|ts2‘, ‘sf:c1‘, ‘sku188‘ put ‘test1‘, ‘user1|ts3‘, ‘sf:s1‘, ‘sku123‘ put ‘test1‘, ‘user2|ts4‘, ‘sf:c1‘, ‘sku2‘ put ‘test1‘, ‘user2|ts5‘, ‘sf:c2‘, ‘sku288‘ put ‘test1‘, ‘user2|ts6‘, ‘sf:s1‘, ‘sku222‘
一个用户(userX),在什么时间(tsX),作为rowkey
对什么产品(value:skuXXX),做了什么操作作为列名,比如,c1: click from homepage; c2: click from ad; s1: search from homepage; b1: buy
查询案例
谁的值=sku188
scan ‘test1‘, FILTER=>"ValueFilter(=,‘binary:sku188‘)" ROW COLUMN+CELL user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
谁的值包含88
scan ‘test1‘, FILTER=>"ValueFilter(=,‘substring:88‘)" ROW COLUMN+CELL user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188 user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
通过广告点击进来的(column为c2)值包含88的用户
scan ‘test1‘, FILTER=>"ColumnPrefixFilter(‘c2‘) AND ValueFilter(=,‘substring:88‘)" ROW COLUMN+CELL user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
通过搜索进来的(column为s)值包含123或者222的用户
scan ‘test1‘, FILTER=>"ColumnPrefixFilter(‘s‘) AND ( ValueFilter(=,‘substring:123‘) OR ValueFilter(=,‘substring:222‘) )" ROW COLUMN+CELL user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123 user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
rowkey为user1开头的
scan ‘test1‘, FILTER => "PrefixFilter (‘user1‘)" ROW COLUMN+CELL user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1 user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188 user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version
KeyOnlyFilter: 只要key,不要value
scan ‘test1‘, FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,‘binary:sku188‘) AND KeyOnlyFilter()" ROW COLUMN+CELL user1|ts2 column=sf:c1, timestamp=1409122354918, value=
从user1|ts2开始,找到所有的rowkey以user1开头的
scan ‘test1‘, {STARTROW=>‘user1|ts2‘, FILTER => "PrefixFilter (‘user1‘)"} ROW COLUMN+CELL user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188 user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
从user1|ts2开始,找到所有的到rowkey以user2开头
scan ‘test1‘, {STARTROW=>‘user1|ts2‘, STOPROW=>‘user2‘} ROW COLUMN+CELL user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188 user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
查询rowkey里面包含ts3的
import org.apache.hadoop.hbase.filter.CompareFilter import org.apache.hadoop.hbase.filter.SubstringComparator import org.apache.hadoop.hbase.filter.RowFilter scan ‘test1‘, {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf(‘EQUAL‘), SubstringComparator.new(‘ts3‘))} ROW COLUMN+CELL user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
查询rowkey里面包含ts的
import org.apache.hadoop.hbase.filter.CompareFilter import org.apache.hadoop.hbase.filter.SubstringComparator import org.apache.hadoop.hbase.filter.RowFilter scan ‘test1‘, {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf(‘EQUAL‘), SubstringComparator.new(‘ts‘))} ROW COLUMN+CELL user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1 user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188 user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123 user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2 user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288 user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
加入一条测试数据
put ‘test1‘, ‘user2|err‘, ‘sf:s1‘, ‘sku999‘
查询rowkey里面以user开头的,新加入的测试数据并不符合正则表达式的规则,故查询不出来
import org.apache.hadoop.hbase.filter.RegexStringComparator import org.apache.hadoop.hbase.filter.CompareFilter import org.apache.hadoop.hbase.filter.SubstringComparator import org.apache.hadoop.hbase.filter.RowFilter scan ‘test1‘, {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf(‘EQUAL‘),RegexStringComparator.new(‘^user\d+\|ts\d+$‘))} ROW COLUMN+CELL user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1 user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188 user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123 user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2 user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288 user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
加入测试数据
put ‘test1‘, ‘user1|ts9‘, ‘sf:b1‘, ‘sku1‘
b1开头的列中并且值为sku1的
scan ‘test1‘, FILTER=>"ColumnPrefixFilter(‘b1‘) AND ValueFilter(=,‘binary:sku1‘)" ROW COLUMN+CELL user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1
SingleColumnValueFilter的使用,b1开头的列中并且值为sku1的
import org.apache.hadoop.hbase.filter.CompareFilter import org.apache.hadoop.hbase.filter.SingleColumnValueFilter import org.apache.hadoop.hbase.filter.SubstringComparator scan ‘test1‘, {COLUMNS => ‘sf:b1‘, FILTER => SingleColumnValueFilter.new(Bytes.toBytes(‘sf‘), Bytes.toBytes(‘b1‘), CompareFilter::CompareOp.valueOf(‘EQUAL‘), Bytes.toBytes(‘sku1‘))} ROW COLUMN+CELL user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1